Collaborative Research: Understanding biophysical drivers of the CH4 source sink transition in Northern Forests

合作研究:了解北部森林 CH4 源汇转变的生物物理驱动因素

基本信息

  • 批准号:
    2208655
  • 负责人:
  • 金额:
    $ 53.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-11-01 至 2025-10-31
  • 项目状态:
    未结题

项目摘要

Methane is second only to carbon dioxide in its contribution to human-induced climate change due to its global warming potential, which is 34 times greater than that of CO2. Microorganisms in wet landscapes tend to release methane, whereas those in dry ones tend to take up the gas from Earth's atmosphere. Researchers at the Howland Research Forest in Maine have been measuring methane fluctuations across this sub-boreal forest since 2012. Their studies have found that the forest usually serves as a methane "sink" due to microbial consumption, although occasionally, under extremely wet conditions, the reverse can be true. This research site provides an ideal opportunity to study the conditions under which a forest would switch from a net sink to become a source of atmospheric methane. Under future climate change scenarios, the region is expected to become warmer and wetter, conditions that may induce a shift from methane sink to source, with the potential to have an impact on atmospheric methane concentrations at regional to global scale. This project will examine how forest soil microbial communities will change in response to climate warming, to identify the conditions that may lead forests to switch from being a methane sink to more of a source. The project will also support the cross-disciplinary training of graduate and undergraduate students and postdoctoral research scholars, including those from underrepresented groups in science. A series of public talks will be convened, and short videos and StoryMaps focused on science outreach will be paired with “scientist in the classroom” visits to local high schools. The project will host an open house for students and the public at the Howland Research Forest to learn about this important research. This study aims to identify - through the integration of field observations, laboratory analyses, and modeling - the conditions and mechanisms driving methane sink vs source activity in forests, using the Howland Research Forest in Maine as a case study. The project's novel approach focuses on three key areas to improve understanding of methane in such habitats: 1) identify the roles and response of soil microbial communities, specifically, methanogens and methanotrophs (and their functional guilds), in driving methane flux across environmental gradients; 2) understand and quantify how wet vs dry landscape microsites, and belowground vs. aboveground components within a forest contribute to seasonal and annual methane fluxes; and 3) integrate knowledge gained from field and laboratory analyses to inform and improve ecosystem process models. A suite of in-situ and lab-based experimental measures of methane production and oxidation, stable isotopes, and profiles of microbial community composition and function will be used to understand the mechanisms, processes, and feedbacks driving methane sink/source activity from site to landscape levels. At the site level, multi-scale observations of soil and aboveground methane fluxes, microbial traits, and associated in-situ environmental conditions will be obtained. To further understand and quantify methane response, in-situ and laboratory manipulation experiments to identify the role of functional guild activity, under changing environmental conditions, in regulating methane production/oxidation and ultimately net methane flux to and from the atmosphere will be employed. Finally, these data, integrated with project data-enhanced Microbial Model for Methane Dynamics-Dual Arrhenius Michaels Menten (M3D-DAMM) and Community Land Model-Microbe (CLM-Microbe) process models, will allow researchers to identify seasonal and annual methane sink/source activity at the landscape level within Howland Forest from the present to 2100. The research will include training at the undergraduate, graduate and postdoctoral levels, as well as a variety of outreach activities to engage high school students and the public.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
甲烷对人类引起的气候变化的影响仅次于二氧化碳,因为它的全球变暖潜力是二氧化碳的 34 倍。潮湿地区的微生物倾向于释放甲烷,而干燥地区的微生物则倾向于吸收甲烷。自 2012 年以来,缅因州豪兰研究森林的研究人员一直在测量这片亚寒带森林的甲烷波动。他们的研究发现,森林通常充当甲烷的作用。由于微生物消耗而产生“下沉”,尽管偶尔在极端潮湿的条件下,情况也可能相反,该研究地点提供了一个理想的机会来研究森林从净下沉转变为大气甲烷来源的条件。在未来的气候变化情景下,该地区预计将变得更加温暖和湿润,这可能会导致甲烷汇向源头的转变,并有可能对区域乃至全球范围内的大气甲烷浓度产生影响。森林土壤微生物群落如何该项目还将支持研究生和本科生以及博士后研究学者的跨学科培训。将召开一系列公开讲座,重点关注科学推广的短视频和故事地图,并将与对当地高中的“课堂上的科学家”参观相结合。该项目将为学生举办开放日活动。以及公众在霍兰研究森林旨在了解这项重要的研究,旨在通过结合实地观察、实验室分析和建模,以缅因州的霍兰研究森林为对象,确定驱动森林中甲烷汇与源活动的条件和机制。该项目的新颖方法侧重于三个关键领域,以提高对此类栖息地中甲烷的了解:1)确定土壤微生物群落的作用和反应,特别是产甲烷菌和甲烷氧化菌(及其功能群),驱动跨环境梯度的甲烷通量;2) 了解并量化森林内潮湿与干燥的景观微点以及地下与地上成分对季节性和年度甲烷通量的影响;3) 整合从现场和实验室分析中获得的知识以提供信息;并改进生态系统过程模型,将使用一套甲烷产生和氧化、稳定同位素以及微生物群落组成和功能概况的原位和实验室实验测量来了解其机制、过程、在场地层面,将获得对土壤和地上甲烷通量、微生物特征和相关原位环境条件的多尺度观测,以进一步了解和量化甲烷。最后,将采用响应、原位和实验室操纵实验来确定功能行会活动在不断变化的环境条件下在调节甲烷产生/氧化以及最终进出大气的净甲烷通量中的作用。数据与项目数据增强型甲烷动力学微生物模型 - 双阿伦尼乌斯迈克尔斯门滕(M3D-DAMM)和社区土地模型 - 微生物(CLM-微生物)过程模型相结合,将使研究人员能够识别季节性和年度甲烷汇/源活动从现在到 2100 年,我们将在豪兰森林的景观层面进行研究。该研究将包括本科生、研究生和博士后级别的培训,以及各种外展活动,以吸引高水平的研究人员参与。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Watts其他文献

Georectifying drone image data over water surfaces without fixed ground control: methodology, uncertainty assessment and application over an estuarine environment
在没有固定地面控制的情况下对水面上的无人机图像数据进行地理校正:方法、不确定性评估和在河口环境中的应用
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jennifer Watts;T. Holding;Karen Anderson;Thomas G. Bell;Bertrand Chapron;Craig Donlon;Fabrice Collard;Neill Wood;David Walker;Leon DeBell;James P. Duffy;Jamie Shutler
  • 通讯作者:
    Jamie Shutler
How Experienced Users Avoid Getting Lost in Large Display Networks
经验丰富的用户如何避免在大型展示网络中迷失方向
  • DOI:
    10.1207/s15327590ijhc1104_1
  • 发表时间:
    1999-12-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jennifer Watts;D. Woods
  • 通讯作者:
    D. Woods
Exploring the interplay between soil thermal and hydrological changes and their impact on carbon fluxes in permafrost ecosystems
探索土壤热和水文变化之间的相互作用及其对永久冻土生态系统碳通量的影响
  • DOI:
    10.1088/1748-9326/ad50ed
  • 发表时间:
    2024-05-28
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Valeria Briones;Elchin Jafarov;Hélène Genet;Brendan M. Rogers;Ruth Rutter;T. Carman;J. Clein;Eugénie S Euschkirchen;E. Schuur;Jennifer Watts;Susan M. Natali
  • 通讯作者:
    Susan M. Natali
Mapping retrogressive thaw slumps using deep neural networks
使用深度神经网络绘制倒退解冻衰退图
  • DOI:
    10.1016/j.rse.2023.113495
  • 发表时间:
    2023-04-01
  • 期刊:
  • 影响因子:
    13.5
  • 作者:
    Yili Yang;B. Rogers;G. Fiske;Jennifer Watts;S. Potter;Tiffany Windholz;Andrew Mullen;Ingmar Nitze;S. Natali
  • 通讯作者:
    S. Natali
Voice Loops as Coordination Aids in Space Shuttle Mission Control
语音循环作为航天飞机任务控制中的协调辅助工具

Jennifer Watts的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennifer Watts', 18)}}的其他基金

Collaborative Research: Environmental and biological controls on carbon uptake phenology in permafrost affected boreal forests
合作研究:对受永久冻土影响的北方森林碳吸收物候的环境和生物控制
  • 批准号:
    2022889
  • 财政年份:
    2020
  • 资助金额:
    $ 53.22万
  • 项目类别:
    Standard Grant
Postdoctoral Research Fellowship in Biosciences Related to the Environment for FY 1998
1998财年与环境相关的生物科学博士后研究奖学金
  • 批准号:
    9804125
  • 财政年份:
    1998
  • 资助金额:
    $ 53.22万
  • 项目类别:
    Fellowship Award

相似国自然基金

面向开放场景的多模态视频表征与理解研究
  • 批准号:
    62376069
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于深度理解的大规模互联网虚假新闻检测研究
  • 批准号:
    62302333
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向真实场景的基于人体关节点的行为理解研究
  • 批准号:
    62302093
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多模态数学问题理解和类人解答方法研究
  • 批准号:
    62376012
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于脉冲神经元内在可塑性建模的类脑智能交互意图理解研究
  • 批准号:
    62376261
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 53.22万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 53.22万
  • 项目类别:
    Continuing Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318851
  • 财政年份:
    2024
  • 资助金额:
    $ 53.22万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 53.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
  • 批准号:
    2349883
  • 财政年份:
    2024
  • 资助金额:
    $ 53.22万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了