CAREER: Tough Architected Concrete Materials: Bio-inspired Design, Manufacturing, and Mechanics

职业:坚韧的建筑混凝土材料:仿生设计、制造和力学

基本信息

  • 批准号:
    2238992
  • 负责人:
  • 金额:
    $ 62.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-11-01 至 2028-10-31
  • 项目状态:
    未结题

项目摘要

This Faculty Career Development (CAREER) award will support fundamental research on the design and fracture behavior of concrete with purposeful arrangements known as architected materials. Concrete is the most common human-made commodity used to build civil and energy infrastructure. However, without reinforcement, concrete suffers from low resistance to cracking and abrupt failure. To improve the shortcomings in mechanical response of cement-based materials, this project will focus on understanding and engineering stronger architected concrete for use in critical civil infrastructure and resilient structural applications. By applying concepts from naturally occurring strong materials such as mother-of-pearl (nacre) and bone that contain modest constituents, new types of concrete composites will be engineered with enhanced mechanical properties, superior to everyday unreinforced concrete counterparts. Through the design and analysis of novel construction materials using a laser process and advanced additive manufacturing, this project supports new applications of stronger and more damage-resilient infrastructure components that can enhance public safety and prosperity. The project will combine experimentation, computational modeling, and analytical approaches to create new methods for studying and designing these materials. Integration of research with educational and outreach activities, including (i) software development, (ii) additive manufacturing of concrete canoe for competition, (iii) development of a bio-inspired design course module, and (iv) participation in the bilingual Día de La Ciencia/Science Day program, will facilitate the use, adoption, and education among engineers, users, and students.The goal of this project is to understand and engineer the fracture behavior of architected concrete inspired by the brick-and-mortar arrangement of nacre and tubular arrangement of osteons in cortical bone. The research program will inform a new understanding of hypothesized toughening mechanisms from biological materials for the design, fabrication, and engineering of unreinforced concrete with enhanced ductility and fracture toughness benchmarked against ordinary and fiber-reinforced counterparts. To achieve these outcomes, the research integrates the following objectives: (i) study the underlying toughening mechanisms in natural materials and develop bio-inspired principles for design of synthetic counterparts and engineering the formulations of hard cementitious and soft hyperelastic constituents, (ii) create efficient manufacturing processes that enable fabrication of morphologically tailored hard-soft multi-material assemblies with purposeful internal defects, (iii) develop research and educational software and toolpath algorithms for additive processes that advance the design and fabrication, (iv) develop suitable experimentation for examining fracture toughness and strength of the architected materials and hard-soft constituents’ interfaces, and (v) develop a numerically robust constitutive framework for modeling fracture behavior in architected assemblies of soft and hard materials. The framework will utilize the phase-field approach to capture crack propagation within the bulk of the soft and hard materials, supplemented with a cohesive-zone model for the interfaces. The project will develop a foundation for understanding, engineering, and predicting the mechanical performance of tough architected composites and will generate new research avenues and design possibilities for crack-resilient applications. The project will allow the PI to advance the knowledge base in fracture mechanics and establish his long-term career in design and advanced manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该教师职业发展(职业)奖将支持对混凝土的设计和断裂行为进行基础研究,混凝土是用于建造民用和能源基础设施的最常见的人造商品。混凝土的抗开裂性和突然破坏性较差,为了改善水泥基材料机械响应的缺点,该项目将重点通过应用来自关键土木基础设施和弹性结构应用的概念来了解和设计更坚固的建筑混凝土。天然存在的坚固材料,例如作为含有少量成分的珍珠母(珍珠层)和骨头,通过使用激光工艺和分析新型建筑材料,新型混凝土复合材料将具有增强的机械性能,优于日常的无筋混凝土件。先进的增材制造,该项目支持更强大、更抗损伤的基础设施组件的新应用,从而增强公共安全和繁荣。该项目将结合实验、计算建模和分析方法,创建研究和设计这些材料的新方法。具有教育意义的研究和外展活动,包括(i)软件开发,(ii)用于竞赛的混凝土独木舟增材制造,(iii)开发仿生设计课程模块,以及(iv)参加双语 Día de La Ciencia/科学日计划,将促进工程师、用户和学生的使用、采用和教育。该项目的目标是理解和设计建筑混凝土的断裂行为,其灵感来自于珍珠母的砖和砂浆排列和管状排列皮质骨该研究项目将提供对生物材料开发的增韧机制的新认识,用于设计、制造和工程无筋混凝土,以普通和纤维增强骨骼为基准,增强延展性和断裂韧性。整合了以下目标:(i) 研究天然材料的潜在增韧机制,并开发合成营养素设计的生物启发原理以及硬水泥和软超弹性成分配方的工程设计,(ii) 创建高效的制造工艺能够制造具有故意内部缺陷的形态定制的硬软多材料组件,(iii) 开发用于推进设计和制造的增材工艺的研究和教育软件和刀具路径算法,(iv) 开发适当的实验来检查断裂韧性和设计材料和硬-软成分界面的强度,以及(v)开发一个数值稳健的本构框架,用于模拟软和硬材料的设计组件中的断裂行为。该框架将利用相场方法。该项目将为理解、设计和预测坚韧复合材料的机械性能奠定基础,并产生新的研究成果。该项目将使 PI 能够提升断裂力学知识基础,并在设计和先进制造领域建立长期职业生涯。该奖项反映了 NSF 的法定使命,并被认为是值得的。通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Reza Moini其他文献

Perspectives in architected infrastructure materials
  • DOI:
    10.21809/rilemtechlett.2023.183
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Reza Moini
  • 通讯作者:
    Reza Moini
Early-age buildability-rheological properties relationship in additively manufactured cement paste hollow cylinders
增材制造水泥浆空心圆柱体的早期可施工性-流变性能关系
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    10.5
  • 作者:
    Reza Moini;J. Olek;P. Zavattieri;J. Youngblood
  • 通讯作者:
    J. Youngblood

Reza Moini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Reza Moini', 18)}}的其他基金

Two-component Robotic Extrusion Additive Manufacturing of Concrete Structures: Silicone-solution Phases and Fiber Distributions for Functionally Graded Materials
混凝土结构的双组分机器人挤压增材制造:功能梯度材料的有机硅溶液相和纤维分布
  • 批准号:
    2217985
  • 财政年份:
    2022
  • 资助金额:
    $ 62.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Engineering Fracture Response and Transport Behavior in Additively Manufactured, Layered Concrete Materials
合作研究:增材制造的层状混凝土材料的工程断裂响应和传输行为
  • 批准号:
    2129566
  • 财政年份:
    2021
  • 资助金额:
    $ 62.35万
  • 项目类别:
    Standard Grant

相似国自然基金

cysK通过抑制巨噬细胞介导的炎症反应进而增强产毒性艰难梭菌致病性的机制研究
  • 批准号:
    82360398
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于艰难梭菌核糖体展示系统的芽孢衣超分子结构组装机制研究
  • 批准号:
    32370029
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
CamA甲基化修饰硝基还原酶家族nfp基因调控艰难梭菌甲硝唑耐药的分子机制研究
  • 批准号:
    82372299
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
艰难梭菌转录因子TreR的SNP突变在抵抗氧化应激过程中的作用及机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于肠内生态及宿主免疫调控探究短双歧杆菌YH68拮抗艰难梭菌的作用机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
  • 批准号:
    2339197
  • 财政年份:
    2024
  • 资助金额:
    $ 62.35万
  • 项目类别:
    Standard Grant
NSF-SNSF: Crack Path Prediction and Control in Nonlinearly Viscoelastic Materials: in-silico to Experiments with Viscoelastic and Tough Hydrogels
NSF-SNSF:非线性粘弹性材料中的裂纹路径预测和控制:粘弹性和坚韧水凝胶的计算机实验
  • 批准号:
    2403592
  • 财政年份:
    2024
  • 资助金额:
    $ 62.35万
  • 项目类别:
    Standard Grant
Solar2Wave: Design of Floating Solar Farms to Overcome Tough Ocean Waves
Solar2Wave:克服汹涌海浪的浮动太阳能发电场设计
  • 批准号:
    10048187
  • 财政年份:
    2023
  • 资助金额:
    $ 62.35万
  • 项目类别:
    Feasibility Studies
Fatigue behavior and underlying mechanism of anisotropic photonic hydrogels
各向异性光子水凝胶的疲劳行为及其潜在机制
  • 批准号:
    23K13796
  • 财政年份:
    2023
  • 资助金额:
    $ 62.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
AMCS – Development of a new, lightweight, ultra-tough advanced matrix composite material for EV and LiON battery armour
AMCS — 开发用于电动汽车和锂离子电池装甲的新型、轻质、超坚韧的先进基质复合材料
  • 批准号:
    10082802
  • 财政年份:
    2023
  • 资助金额:
    $ 62.35万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了