CAREER: Tough Architected Concrete Materials: Bio-inspired Design, Manufacturing, and Mechanics

职业:坚韧的建筑混凝土材料:仿生设计、制造和力学

基本信息

  • 批准号:
    2238992
  • 负责人:
  • 金额:
    $ 62.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-11-01 至 2028-10-31
  • 项目状态:
    未结题

项目摘要

This Faculty Career Development (CAREER) award will support fundamental research on the design and fracture behavior of concrete with purposeful arrangements known as architected materials. Concrete is the most common human-made commodity used to build civil and energy infrastructure. However, without reinforcement, concrete suffers from low resistance to cracking and abrupt failure. To improve the shortcomings in mechanical response of cement-based materials, this project will focus on understanding and engineering stronger architected concrete for use in critical civil infrastructure and resilient structural applications. By applying concepts from naturally occurring strong materials such as mother-of-pearl (nacre) and bone that contain modest constituents, new types of concrete composites will be engineered with enhanced mechanical properties, superior to everyday unreinforced concrete counterparts. Through the design and analysis of novel construction materials using a laser process and advanced additive manufacturing, this project supports new applications of stronger and more damage-resilient infrastructure components that can enhance public safety and prosperity. The project will combine experimentation, computational modeling, and analytical approaches to create new methods for studying and designing these materials. Integration of research with educational and outreach activities, including (i) software development, (ii) additive manufacturing of concrete canoe for competition, (iii) development of a bio-inspired design course module, and (iv) participation in the bilingual Día de La Ciencia/Science Day program, will facilitate the use, adoption, and education among engineers, users, and students.The goal of this project is to understand and engineer the fracture behavior of architected concrete inspired by the brick-and-mortar arrangement of nacre and tubular arrangement of osteons in cortical bone. The research program will inform a new understanding of hypothesized toughening mechanisms from biological materials for the design, fabrication, and engineering of unreinforced concrete with enhanced ductility and fracture toughness benchmarked against ordinary and fiber-reinforced counterparts. To achieve these outcomes, the research integrates the following objectives: (i) study the underlying toughening mechanisms in natural materials and develop bio-inspired principles for design of synthetic counterparts and engineering the formulations of hard cementitious and soft hyperelastic constituents, (ii) create efficient manufacturing processes that enable fabrication of morphologically tailored hard-soft multi-material assemblies with purposeful internal defects, (iii) develop research and educational software and toolpath algorithms for additive processes that advance the design and fabrication, (iv) develop suitable experimentation for examining fracture toughness and strength of the architected materials and hard-soft constituents’ interfaces, and (v) develop a numerically robust constitutive framework for modeling fracture behavior in architected assemblies of soft and hard materials. The framework will utilize the phase-field approach to capture crack propagation within the bulk of the soft and hard materials, supplemented with a cohesive-zone model for the interfaces. The project will develop a foundation for understanding, engineering, and predicting the mechanical performance of tough architected composites and will generate new research avenues and design possibilities for crack-resilient applications. The project will allow the PI to advance the knowledge base in fracture mechanics and establish his long-term career in design and advanced manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该教师职业发展(职业)奖将支持有关混凝土设计和破裂行为的基本研究,并有目的的安排称为架构材料。混凝土是用于建造民用和能源基础设施的最常见的人为商品。但是,没有加固,混凝土的耐药性低对破裂和突然失败。为了改善基于水泥材料的机械响应的缺点,该项目将着重于理解和工程强大的架构混凝土,以用于关键的民用基础设施和抵抗结构应用。通过应用自然存在的强大材料(例如珍珠母(Nacre)和包含适度构建体的骨骼)的概念,新型混凝土复合材料将采用增强的机械性能设计,而不是每天未增强的混凝土对应物。通过使用激光过程和高级添加剂制造的新型建筑材料的设计和分析,该项目支持了更强大,更损害的基础设施组件的新应用,可以增强公共安全和繁荣。该项目将结合实验,计算建模和分析方法,以创建用于研究和设计这些材料的新方法。将研究与教育和外展活动的整合,包括(i)软件开发,(ii)混凝土独木舟竞争的添加剂制造,(iii)开发生物启发的设计课程模块,以及(iv)参与双语性díade la laCiencia/Science Day计划,将促进IS的使用,并有助于使用该计划,并促进该行为的行为。构造的混凝土灵感来自于皮质骨骼中骨的Nacre和管状布置的实体布置。该研究计划将为假设的韧性机制提供新的了解,从生物学材料进行设计,制造和工程的未增强混凝土的设计,制造和工程,并具有增强的延展性和裂缝韧性,对普通和光纤增压的对应物进行了基准测试。为了实现这些结果,该研究融合了以下目标:(i)研究天然材料中的潜在坚韧机制,并制定了生物启发的合成对应物设计的生物启发的原则,并设计了坚硬的水泥和软弹性构成的公式,(II)创建具有多种多样的多种形式的型号的实体制造过程开发用于推进设计和制造的添加过程的研究和教育软件和工具路径算法,(iv)开发合适的实验,以检查构建材料的断裂韧性和强度以及硬柔软的构造的界面,以及(v)在架构构造的软件和硬质材料中建模型号的数字构成框架。该框架将利用相位场方法来捕获大部分柔软和硬材料内的裂纹传播,并补充了界面的粘性区域模型。该项目将为理解,工程和预测坚固的架构复合材料的机械性能奠定基础,并为裂纹弹性应用产生新的研究途径和设计可能性。该项目将使PI能够通过断裂机制提高知识库,并在设计和高级制造业中建立他的长期职业。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,通过评估被认为是珍贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Reza Moini其他文献

Perspectives in architected infrastructure materials
  • DOI:
    10.21809/rilemtechlett.2023.183
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Reza Moini
  • 通讯作者:
    Reza Moini
Early-age buildability-rheological properties relationship in additively manufactured cement paste hollow cylinders
增材制造水泥浆空心圆柱体的早期可施工性-流变性能关系
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    10.5
  • 作者:
    Reza Moini;J. Olek;P. Zavattieri;J. Youngblood
  • 通讯作者:
    J. Youngblood

Reza Moini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Reza Moini', 18)}}的其他基金

Two-component Robotic Extrusion Additive Manufacturing of Concrete Structures: Silicone-solution Phases and Fiber Distributions for Functionally Graded Materials
混凝土结构的双组分机器人挤压增材制造:功能梯度材料的有机硅溶液相和纤维分布
  • 批准号:
    2217985
  • 财政年份:
    2022
  • 资助金额:
    $ 62.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Engineering Fracture Response and Transport Behavior in Additively Manufactured, Layered Concrete Materials
合作研究:增材制造的层状混凝土材料的工程断裂响应和传输行为
  • 批准号:
    2129566
  • 财政年份:
    2021
  • 资助金额:
    $ 62.35万
  • 项目类别:
    Standard Grant

相似国自然基金

cysK通过抑制巨噬细胞介导的炎症反应进而增强产毒性艰难梭菌致病性的机制研究
  • 批准号:
    82360398
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于艰难梭菌核糖体展示系统的芽孢衣超分子结构组装机制研究
  • 批准号:
    32370029
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
肠道菌群介导的脱氧胆酸激活S1PR2/NLRP3/IL-1β通路在炎症性肠病合并艰难梭菌感染中的致病机制研究
  • 批准号:
    82372306
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
CamA甲基化修饰硝基还原酶家族nfp基因调控艰难梭菌甲硝唑耐药的分子机制研究
  • 批准号:
    82372299
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于肠内生态及宿主免疫调控探究短双歧杆菌YH68拮抗艰难梭菌的作用机制
  • 批准号:
    32200154
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
  • 批准号:
    2339197
  • 财政年份:
    2024
  • 资助金额:
    $ 62.35万
  • 项目类别:
    Standard Grant
NSF-SNSF: Crack Path Prediction and Control in Nonlinearly Viscoelastic Materials: in-silico to Experiments with Viscoelastic and Tough Hydrogels
NSF-SNSF:非线性粘弹性材料中的裂纹路径预测和控制:粘弹性和坚韧水凝胶的计算机实验
  • 批准号:
    2403592
  • 财政年份:
    2024
  • 资助金额:
    $ 62.35万
  • 项目类别:
    Standard Grant
Solar2Wave: Design of Floating Solar Farms to Overcome Tough Ocean Waves
Solar2Wave:克服汹涌海浪的浮动太阳能发电场设计
  • 批准号:
    10048187
  • 财政年份:
    2023
  • 资助金额:
    $ 62.35万
  • 项目类别:
    Feasibility Studies
Fatigue behavior and underlying mechanism of anisotropic photonic hydrogels
各向异性光子水凝胶的疲劳行为及其潜在机制
  • 批准号:
    23K13796
  • 财政年份:
    2023
  • 资助金额:
    $ 62.35万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
AMCS – Development of a new, lightweight, ultra-tough advanced matrix composite material for EV and LiON battery armour
AMCS — 开发用于电动汽车和锂离子电池装甲的新型、轻质、超坚韧的先进基质复合材料
  • 批准号:
    10082802
  • 财政年份:
    2023
  • 资助金额:
    $ 62.35万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了