CAREER: Learning, Estimation, and Control of Networked Epidemic Processes
职业:网络化流行病过程的学习、估计和控制
基本信息
- 批准号:2238388
- 负责人:
- 金额:$ 51.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2028-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Current approaches for controlling diseases spreading through populations employ techniques that rely solely on mathematical models or only depend on data, with no clear connection between these two extremes. The proposed research will establish a set of fundamental theories, tools, and algorithms to model, learn, and control real-time epidemic spreading processes by leveraging multiple live data streams while evaluating the trade-off between model-based and data-driven approaches. The proposed research consists of three thrusts. The first thrust will encompass the design of a set of novel models to characterize epidemic spreading under different settings, providing tools for connecting and comparing models at different resolutions. The next thrust will include algorithm design and development aimed at selecting the appropriate models and identification of model features by leveraging multiple live data streams. The last thrust will incorporate the multi-resolution models from the first two thrusts within a data-driven predictive control framework, studying model-based vs. data-driven approaches. This research will help provide insights for decision makers, such as politicians, public health officials, administrators, and business leaders, to better mitigate future disease outbreaks. The proposed research will develop a class of multi-resolution models that enable nonlinear control design that spans and adapts along the model-based vs. data-driven spectrum and is focused on the application of networked epidemic processes. The project will identify fundamental bounds on achievable performance in the presence of corrupted data sets and provide theories and algorithms with performance guarantees. The proposed research will lead to a greater understanding of the fundamental factors that affect the modeling, learning, and control of networked systems with multiple online data streams; establishing systematic procedures for model selection, estimating parameters and structure from uncertain and biased data; and developing realizable real-time control strategies for and across different model resolutions. The research plan will be integrated into education through a software platform to serve as an educational tool, giving students hands-on experience with data, exponential growth, dynamic modeling, and control.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当前通过人群传播的疾病的当前方法采用仅依赖数学模型或仅取决于数据的技术,而这两个极端之间没有明确的联系。拟议的研究将建立一系列基本理论,工具和算法,以通过利用多个实时数据流来建模,学习和控制实时流行病扩散过程,同时评估基于模型和数据驱动的方法之间的权衡。拟议的研究包括三个推力。第一个推力将涵盖一组新型模型的设计,以表征在不同设置下流行病扩散,从而提供了连接和比较不同分辨率模型的工具。下一个推力将包括算法设计和开发,旨在通过利用多个实时数据流来选择适当的模型和识别模型功能。最后一个推力将在数据驱动的预测控制框架中结合前两个推力的多分辨率模型,从而研究基于模型的模型与数据驱动的方法。这项研究将有助于为决策者提供见解,例如政客,公共卫生官员,管理人员和商业领袖,以更好地减轻未来的疾病爆发。拟议的研究将开发一类多分辨率模型,该模型可以启用非线性控制设计,该设计跨越基于模型和数据驱动的频谱,并专注于网络流行过程的应用。该项目将在损坏的数据集存在下确定可实现性能的基本界限,并提供具有性能保证的理论和算法。拟议的研究将使对影响具有多个在线数据流的网络系统的建模,学习和控制的基本因素有更深入的了解;建立用于模型选择的系统程序,从不确定和有偏见的数据中估算参数和结构;并在不同模型分辨率上制定可实现的实时控制策略。该研究计划将通过软件平台整合到教育中,以作为一种教育工具,为学生提供数据,指数增长,动态建模和控制的实践经验。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来进行评估的。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal Safety-Critical Control of Epidemics
- DOI:10.1109/lcsys.2023.3280116
- 发表时间:2023
- 期刊:
- 影响因子:3
- 作者:Brooks A. Butler;Philip E. Paré
- 通讯作者:Brooks A. Butler;Philip E. Paré
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Pare其他文献
Philip Pare的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Pare', 18)}}的其他基金
Student Travel Support Program for 2023 IEEE Conference on Decision and Control (CDC-23)
2023 年 IEEE 决策与控制会议 (CDC-23) 学生旅行支持计划
- 批准号:
2330879 - 财政年份:2023
- 资助金额:
$ 51.35万 - 项目类别:
Standard Grant
Rapid: Collaborative Research: Using Data to Understand the Effects of Transportation on the Spread of COVID-19 as a Propagator and a Control Mechanism
快速:协作研究:利用数据了解交通作为传播者和控制机制对 COVID-19 传播的影响
- 批准号:
2028738 - 财政年份:2020
- 资助金额:
$ 51.35万 - 项目类别:
Standard Grant
Collaborative Research: A comprehensive approach to modeling, learning, analysis and control of epidemic processes over time-varying and multi-layer networks
协作研究:时变多层网络上的流行病过程建模、学习、分析和控制的综合方法
- 批准号:
2032258 - 财政年份:2020
- 资助金额:
$ 51.35万 - 项目类别:
Standard Grant
相似国自然基金
基于因果学习的脓毒症最佳治疗策略与效应估计关键技术研究
- 批准号:62371438
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
基于深度学习的立体极化阵列近场源参数估计方法研究
- 批准号:62301404
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Catoni 估计方法在机器学习中的理论及应用
- 批准号:12301376
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于深度学习的流依赖背景误差方差估计方法研究
- 批准号:42375150
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于机理驱动源项估计和路径规划的多智能体强化学习寻源方法研究
- 批准号:62306023
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: New data integration approaches for efficient and robust meta-estimation, model fusion and transfer learning
职业:新的数据集成方法,用于高效、稳健的元估计、模型融合和迁移学习
- 批准号:
2337943 - 财政年份:2024
- 资助金额:
$ 51.35万 - 项目类别:
Continuing Grant
Multi-ethnic risk prediction for complex human diseases integrating multi-source genetic and non-genetic information
整合多源遗传与非遗传信息的人类复杂疾病多民族风险预测
- 批准号:
10754773 - 财政年份:2023
- 资助金额:
$ 51.35万 - 项目类别:
Electrocardiogram-based deep learning and decision analysis to improve atrial fibrillation risk estimation
基于心电图的深度学习和决策分析改善房颤风险评估
- 批准号:
10722762 - 财政年份:2023
- 资助金额:
$ 51.35万 - 项目类别:
Targeting High Risk Drinking Days with Mobile Treatment for Spanish-Speaking Patients
通过针对西班牙语患者的移动治疗来瞄准高风险饮酒日
- 批准号:
10722095 - 财政年份:2023
- 资助金额:
$ 51.35万 - 项目类别:
CAREER: New Foundations for Multi-Fidelity Prediction, Estimation, and Learning Under Uncertainty in Dynamical Systems
职业生涯:动态系统不确定性下多保真度预测、估计和学习的新基础
- 批准号:
2238913 - 财政年份:2023
- 资助金额:
$ 51.35万 - 项目类别:
Standard Grant