Quantum State Engineering with Bose-Einstein Condensates: Dressed-State and Hydrodynamic Approaches
玻色-爱因斯坦凝聚体的量子态工程:修饰态和流体动力学方法
基本信息
- 批准号:2207588
- 负责人:
- 金额:$ 58.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project employs ultracold atomic gases to model complex quantum mechanical phenomena. Using laser cooling and related techniques, a cloud of atoms is cooled down to temperatures near absolute zero. Under appropriate conditions the atoms coalesce into a Bose-Einstein condensate, a macroscopic matter wave displaying quantum mechanical behavior. The large size of these objects, which can extend over hundreds of microns, implies that they are readily observable using custom imaging optics, and a rich toolset based on atomic physics is available for their manipulation. This, together with their quantum mechanical nature, makes them an ideal platform to study complex quantum mechanical phenomena. With the recent and ongoing development of novel experimental tools and theoretical approaches, such quantum analog modeling has become a major thrust of research in Atomic, Molecular and Optical (AMO) physics. Ultracold atom platforms can be applied to study phenomena from condensed matter physics, nonlinear science, hydrodynamics, quantum optics, and more, demonstrating their importance as highly versatile testbeds in modern physics. The experiments conducted in this project investigate several approaches to probe the emergence of periodic structures with crystal-like properties from the macroscopic matter wave of a Bose-Einstein condensate. The dynamical properties of such crystalline structures pose many theoretical challenges, and the experiments provide essential benchmark data for the development of a theoretical understanding. Going beyond the realm of ultracold atoms, the insight gained through this line of research is of high relevance for condensed matter physics and nonlinear science as well. The experiments are conducted with complex setups that utilize a large range of modern experimental techniques, including lasers and optics, ultrahigh vacuum technology, automation programming, and advanced electronics. This makes them ideal platforms to train students in a multitude of areas relevant for modern quantum technologies which use quantum mechanical effects in sensor applications e.g. to detect magnetic, electric or gravitational fields, for fundamentally secure communication, or to establish new paradigms for efficient computing. This research program advocates the use of ultracold atomic gases as a highly flexible platform for the study of quantum phases and dynamics. Along the lines of quantum analog simulation, several innovative approaches to investigate emerging band structures and associated phenomena in dilute-gas Bose-Einstein condensates (BECs) are employed. The starting point is a BEC in which spin and motional degrees of freedom are coupled by a set of Raman laser beams. This spin-orbit coupling is then supplemented with a radiofrequency dressing or microwave dressing to generate effective lattice structures with unusual properties. In the first case, an effective Zeeman lattice emerges even though neither the spin-orbit coupling nor the radiofrequency alone produce a periodic band structure. The second case leads to a new method to generate a supersolid-like state with large spatial periodicity, overcoming the limitations of previous approaches. As a third, complementary approach coming from a quantum hydrodynamics perspective, the experimental realization of densely packed interacting soliton trains provides a very different and unexplored access to the study of crystalline properties that arise in a superfluid system without imposing a periodic external potential. The quantum analog simulation of condensed matter, hydrodynamic or nonlinear phenomena using the versatile toolbox of atomic physics is a highly active area in quantum gas research, and the experiments provide important benchmark data motivating the concurrent development of theoretical approaches.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目采用超冷原子气体来模拟复杂的量子力学现象。使用激光冷却和相关技术,原子云被冷却到接近绝对零的温度。在适当的条件下,原子合并成玻色-爱因斯坦凝聚体,这是一种显示量子力学行为的宏观物质波。这些物体的尺寸很大,可以延伸到数百微米以上,这意味着可以使用定制成像光学器件轻松观察它们,并且可以使用基于原子物理学的丰富工具集来操纵它们。这加上它们的量子力学性质,使它们成为研究复杂量子力学现象的理想平台。随着新型实验工具和理论方法的不断发展,这种量子模拟建模已成为原子、分子和光学(AMO)物理学研究的主要推动力。超冷原子平台可用于研究凝聚态物理、非线性科学、流体动力学、量子光学等领域的现象,证明了它们作为现代物理学中高度通用的测试平台的重要性。该项目中进行的实验研究了几种方法来探测玻色-爱因斯坦凝聚态宏观物质波中具有类晶体特性的周期性结构的出现。这种晶体结构的动力学特性提出了许多理论挑战,实验为理论理解的发展提供了必要的基准数据。除了超冷原子领域之外,通过这一系列研究获得的见解对于凝聚态物理和非线性科学也具有高度相关性。这些实验是在复杂的装置下进行的,这些装置利用了大量的现代实验技术,包括激光和光学、超高真空技术、自动化编程和先进的电子技术。这使它们成为在现代量子技术相关的多个领域培训学生的理想平台,这些领域在传感器应用中使用量子力学效应,例如:检测磁场、电场或重力场,从根本上实现安全通信,或建立高效计算的新范例。 该研究计划提倡使用超冷原子气体作为研究量子相和动力学的高度灵活的平台。沿着量子模拟模拟的思路,采用了几种创新方法来研究稀气体玻色-爱因斯坦凝聚体(BEC)中的新兴能带结构和相关现象。起点是 BEC,其中自旋和运动自由度通过一组拉曼激光束耦合。然后用射频敷料或微波敷料补充这种自旋轨道耦合,以生成具有不寻常特性的有效晶格结构。在第一种情况下,即使自旋轨道耦合和射频都不能单独产生周期性能带结构,但仍会出现有效的塞曼晶格。第二种情况导致了一种产生具有大空间周期性的类超固体状态的新方法,克服了以前方法的局限性。作为来自量子流体动力学角度的第三种补充方法,密集相互作用孤子列的实验实现为研究超流体系统中出现的晶体特性提供了一种非常不同且未经探索的途径,而无需施加周期性外部势。 使用原子物理学的多功能工具箱对凝聚态、流体动力学或非线性现象进行量子模拟模拟是量子气体研究中高度活跃的领域,实验提供了重要的基准数据,推动了理论方法的并行发展。该奖项反映了 NSF 的法定使命通过使用基金会的智力优点和更广泛的影响审查标准进行评估,并被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Engels其他文献
Vector dark-antidark solitary waves in multicomponent Bose-Einstein condensates
多组分玻色-爱因斯坦凝聚中的矢量暗-反暗孤立波
- DOI:
10.1103/physreva.94.053617 - 发表时间:
2016-06-17 - 期刊:
- 影响因子:2.9
- 作者:
I. Danaila;M. A. Khamehchi;V. Gokhroo;Peter Engels;P. Kevrekidis - 通讯作者:
P. Kevrekidis
Multiple dark-bright solitons in atomic Bose-Einstein condensates
原子玻色-爱因斯坦凝聚中的多个暗-亮孤子
- DOI:
10.1103/physreva.84.053630 - 发表时间:
2011-04-21 - 期刊:
- 影响因子:2.9
- 作者:
D. Yan;Jiajia Chang;C. Hamner;Panos Kevrekidis;Peter Engels;V. Achilleos;D. Frantzeskakis;R. Car - 通讯作者:
R. Car
cAMP-specific phosphodiesterase HSPDE4D3 mutants which mimic activation and changes in rolipram inhibition triggered by protein kinase A phosphorylation of Ser-54: generation of a molecular model.
cAMP 特异性磷酸二酯酶 HSPDE4D3 突变体模拟由蛋白激酶 A Ser-54 磷酸化触发的咯利普兰抑制的激活和变化:分子模型的生成。
- DOI:
10.1042/bj3330139 - 发表时间:
1998-07-01 - 期刊:
- 影响因子:0
- 作者:
Ralf Hoffmann;Ian R. Wilkinson;J. Fraser McCALLUM;Peter Engels;M. Houslay - 通讯作者:
M. Houslay
Piston dispersive shock wave problem.
活塞弥散激波问题。
- DOI:
10.1103/physrevlett.100.084504 - 发表时间:
2007-10-14 - 期刊:
- 影响因子:8.6
- 作者:
Mark Hoefer;M. Ablowitz;Peter Engels - 通讯作者:
Peter Engels
Rapidly rotating Bose-Einstein condensates in and near the lowest Landau level.
快速旋转的玻色-爱因斯坦凝聚态位于最低朗道能级及其附近。
- DOI:
10.1103/physrevlett.92.040404 - 发表时间:
2003-08-27 - 期刊:
- 影响因子:8.6
- 作者:
V. Schweikhard;I. Coddington;Peter Engels;V. Mogendorff;Eric A. Cornell - 通讯作者:
Eric A. Cornell
Peter Engels的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Engels', 18)}}的其他基金
Quantum Phases, Interactions and Topology of Dressed BECs
修饰 BEC 的量子相、相互作用和拓扑
- 批准号:
1912540 - 财政年份:2019
- 资助金额:
$ 58.91万 - 项目类别:
Continuing Grant
OP: Quantum Phases and Dynamics of Bose-Einstein Condensates with Artificial Gauge Fields
OP:人工规范场玻色-爱因斯坦凝聚体的量子相和动力学
- 批准号:
1607495 - 财政年份:2016
- 资助金额:
$ 58.91万 - 项目类别:
Standard Grant
Quantum Hydrodynamics with Multicomponent and Dispersion-Managed Degenerate Gases
多组分和分散管理简并气体的量子流体动力学
- 批准号:
1306662 - 财政年份:2013
- 资助金额:
$ 58.91万 - 项目类别:
Continuing Grant
Nonlinear Dynamics and Disorder Effects in Bose-Einstein Condensates, Degenerate Fermi Gases and Mixtures
玻色-爱因斯坦凝聚体、简并费米气体和混合物中的非线性动力学和无序效应
- 批准号:
0969867 - 财政年份:2010
- 资助金额:
$ 58.91万 - 项目类别:
Continuing Grant
Nonlinear quantum hydrodynamics in ultracold Bose and Fermi gases
超冷玻色和费米气体中的非线性量子流体动力学
- 批准号:
0652976 - 财政年份:2007
- 资助金额:
$ 58.91万 - 项目类别:
Continuing Grant
相似国自然基金
高含水工程渣土堆填边坡失稳后运动状态演化机理
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
基于三状态仓室模型的工程变更多阶段双流传播决策理论与方法
- 批准号:52175219
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
hBD-1基因重组乳酸工程菌对炎症状态GMSCs/BMSCs功能的影响及机制研究
- 批准号:81801024
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
PHD2基因沉默后骨髓间充质干细胞修复炎症微环境状态下大鼠牙周组织缺损的研究
- 批准号:81800973
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
智能感知的盾构地铁运营风险知识发现与安全状态时变精准评价研究
- 批准号:71801101
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of Quantum Magnetic Tunneling Junction Sensor Arrays for Brain Magnetoencephalography (MEG) under Natural Settings
自然环境下脑磁图 (MEG) 量子磁隧道结传感器阵列的开发
- 批准号:
10723802 - 财政年份:2023
- 资助金额:
$ 58.91万 - 项目类别:
ExpandQISE: Track 2: Leveraging synthetic degrees of freedom for quantum state engineering in photonic chips
ExpandQISE:轨道 2:利用光子芯片中量子态工程的合成自由度
- 批准号:
2328993 - 财政年份:2023
- 资助金额:
$ 58.91万 - 项目类别:
Continuing Grant
Directed evolution of broadly fungible biosensors
广泛可替代生物传感器的定向进化
- 批准号:
10587024 - 财政年份:2023
- 资助金额:
$ 58.91万 - 项目类别:
ExpandQISE: Track 2: Leveraging synthetic degrees of freedom for quantum state engineering in photonic chips
ExpandQISE:轨道 2:利用光子芯片中量子态工程的合成自由度
- 批准号:
2328993 - 财政年份:2023
- 资助金额:
$ 58.91万 - 项目类别:
Continuing Grant
Helium Recycling for UIC Nuclear Magnetic Resonance
UIC 核磁共振氦气回收
- 批准号:
10533681 - 财政年份:2022
- 资助金额:
$ 58.91万 - 项目类别: