CAREER: Towards Hierarchical and Provably Safe Control for Learning-Enabled Autonomous Systems

职业:为支持学习的自主系统实现分层且可证明安全的控制

基本信息

  • 批准号:
    2237850
  • 负责人:
  • 金额:
    $ 60.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-01 至 2028-02-29
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development Program (CAREER) grant will fund research that enhances the reliability, trustworthiness, and societal acceptance of autonomous systems that rely on machine learning-enabled technologies, thereby promoting the progress of science, and advancing the national prosperity and welfare. Autonomous robotic systems, such as self-driving cars and drones, are shaping the nation's future insofar as the transportation, logistics, and service segments of the economy are concerned. Artificial neural networks have become an indispensable component of modern autonomous systems, especially in their perception and control pipelines. However, neural networks are complex, difficult to analyze, and sensitive to input perturbations or adversarial attacks. This renders their rigorous analysis and design very challenging. Thus, despite the continued optimism and tremendous technological progress in recent years, truly autonomous systems remain elusive because of outstanding safety and reliability concerns. This project overcomes these concerns by establishing a rigorous methodological framework and efficient algorithms for the analysis, verification, motion planning, and control design of safety-critical dynamic systems with learning-enabled components. It demonstrates how this framework enables provable performance guarantees for safe and reliable operation. Through close integration of research, education, and outreach, the project aims to leverage knowledge discovery to stimulate teaching and learning, use inspired teaching to encourage excitement in research, and make newly generated knowledge accessible to the public. This is accomplished through active learning-based design of a course on safety control in robotics, by engaging students from underrepresented groups in research and organizing K-12 summer workshops with hands-on robotics activities, and by increasing public literacy, awareness, and trust in safety-related technologies for autonomous systems.This research aims to develop the foundations of a mathematically rigorous framework for the multi-rate and provably safe motion planning and control of autonomous systems with neural network components. It achieves this aim by investigating constrained zonotope- and hybrid zonotope-based algorithms for computing over-approximated reachable sets for neural feedback systems with a tunable trade-off between computational efficiency and approximation accuracy; robust quadratic program-based methods for designing provably safe, periodic event-triggered tracking controllers; second-order cone program-based trajectory planning methods for neural feedback systems with continuous-time safety guarantees; and provably safe multi-rate planning and control algorithms with an assume-guarantee contract between the planning and tracking layers. Verification and validation of the theoretical results will be performed using high-fidelity vehicle dynamics software simulations and with physical experiments on two lab-based robotic platforms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项教师早期职业发展计划(职业)赠款将资助研究,以增强依靠支持机器学习技术的自主系统的可靠性,可信赖性和社会认可,从而促进科学的进步,并促进国家繁荣和福利。自动驾驶汽车和无人机等自主机器人系统正在塑造国家的未来,而经济的运输,物流和服务部门涉及经济。人工神经网络已成为现代自治系统的必不可少的组成部分,尤其是在其感知和控制管道中。但是,神经网络很复杂,难以分析,并且对输入扰动或对抗性攻击敏感。这使他们的严格分析和设计非常具有挑战性。因此,尽管近年来一直保持乐观和巨大的技术进步,但由于出色的安全性和可靠性问题,真正的自主系统仍然难以捉摸。该项目通过建立严格的方法框架和有效的算法来克服这些问题,用于分析,验证,运动计划和控制启用学习的组件的安全关键动态系统的设计。它演示了该框架如何为安全可靠的操作提供可证明的性能保证。通过紧密整合研究,教育和外展,该项目旨在利用知识发现来刺激教学,利用灵感的教学来鼓励研究兴奋,并使新产生的知识可供公众获得。这是通过基于基于学习的机器人技术安全控制课程的积极学习的设计,通过使代表性不足的小组的学生与动手机器人活动一起在研究和组织K-12的夏季研讨会中吸引的学生来实现这一目标,从而实现这一目标,并提高公众素养,意识,对自动企业的安全相关技术,以开发与安全性的跨性别框架和经典的建筑物,以实现与安全性相关的技术。具有神经网络组件的自主系统。它通过研究基于限制的生物体和杂化界限算法来计算过度评估的神经反馈系统的可及可触及的集合来实现这一目标。强大的基于二次程序的方法,用于设计可证明的安全,周期性事件触发的跟踪控制器;具有连续时间安全保证的神经反馈系统的二阶锥体轨迹计划方法;可证明安全的多率计划和控制算法,并在规划层和跟踪层之间具有假定保证合同。验证和验证理论结果将使用高保真车辆动力学软件模拟以及在两个基于实验室的机器人平台上进行物理实验进行验证。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估标准通过评估来进行评估的。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Backward Reachability Analysis of Neural Feedback Systems Using Hybrid Zonotopes
使用混合区域位的神经反馈系统的后向可达性分析
Safe Control of Euler-Lagrange Systems with Limited Model Information
模型信息有限的欧拉-拉格朗日系统的安全控制
共 2 条
  • 1
前往

Xiangru Xu其他文献

A software toolkit and hardware platform for investigating and comparing robot autonomy algorithms in simulation and reality
用于在仿真和现实中研究和比较机器人自主算法的软件工具包和硬件平台
  • DOI:
    10.48550/arxiv.2206.06537
    10.48550/arxiv.2206.06537
  • 发表时间:
    2022
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Elmquist;Aaron Young;Ishaan Mahajan;Kyle Fahey;Abhiraj Dashora;Sriram Ashokkumar;Stefan Caldararu;Victor Freire;Xiangru Xu;R. Serban;D. Negrut
    A. Elmquist;Aaron Young;Ishaan Mahajan;Kyle Fahey;Abhiraj Dashora;Sriram Ashokkumar;Stefan Caldararu;Victor Freire;Xiangru Xu;R. Serban;D. Negrut
  • 通讯作者:
    D. Negrut
    D. Negrut
Rapid Development of an Autonomous Vehicle for the SAE AutoDrive Challenge II Competition
为 SAE AutoDrive Challenge II 竞赛快速开发自动驾驶汽车
  • DOI:
    10.4271/2024-01-1980
    10.4271/2024-01-1980
  • 发表时间:
    2024
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sriram Ashokkumar;Anirudh Jayendra;Sam Tobin;Ariel Leykin;Robert Stegeman;Abhiraj Dashora;Bryan Look;Joseph Koenig;Brian Hu;Mason Crooks;Ishaan Mahajan;Pravin Boopathy;Mukund Krishnakumar;Nevindu Batagoda;Han Wang;Aaron Young;Victor Freire;Glenn Bower;Xiangru Xu;D. Negrut
    Sriram Ashokkumar;Anirudh Jayendra;Sam Tobin;Ariel Leykin;Robert Stegeman;Abhiraj Dashora;Bryan Look;Joseph Koenig;Brian Hu;Mason Crooks;Ishaan Mahajan;Pravin Boopathy;Mukund Krishnakumar;Nevindu Batagoda;Han Wang;Aaron Young;Victor Freire;Glenn Bower;Xiangru Xu;D. Negrut
  • 通讯作者:
    D. Negrut
    D. Negrut
Conservation and variation of gene regulation in embryonic stem cells assessed by comparative genomics
通过比较基因组学评估胚胎干细胞基因调控的保守性和变异
Establishment of an artificial beta-cell line expressing insulin under the control of doxycycline.
建立在强力霉素控制下表达胰岛素的人工β细胞系。
Hybrid Zonotope-Based Backward Reachability Analysis for Neural Feedback Systems With Nonlinear System Models
具有非线性系统模型的神经反馈系统的基于混合区域位的后向可达性分析
  • DOI:
  • 发表时间:
    2023
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Han Zhang;Yuhao Zhang;Xiangru Xu
    Han Zhang;Yuhao Zhang;Xiangru Xu
  • 通讯作者:
    Xiangru Xu
    Xiangru Xu
共 23 条
  • 1
  • 2
  • 3
  • 4
  • 5
前往

相似国自然基金

深大水库热分层驱动下微塑料垂向迁移特征及其动态影响机制
  • 批准号:
    42377263
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
复合材料分层损伤的超声导波对向混频定位研究
  • 批准号:
    12304515
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
长波极化干涉SAR沙漠区垂直向水分分层厚度反演研究
  • 批准号:
    42374046
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
壁湍流中展向旋转与法向分层效应的相似性研究
  • 批准号:
    12302284
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大型风电场边界层垂向分层结构与等效粗糙度模型研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目

相似海外基金

Advanced measurement for unveiling hierarchical quasiparticles towards renovating molecular materials research
揭示分级准粒子的先进测量,以革新分子材料研究
  • 批准号:
    23H05461
    23H05461
  • 财政年份:
    2023
  • 资助金额:
    $ 60.36万
    $ 60.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
    Grant-in-Aid for Scientific Research (S)
Towards efficient state estimation in wall-bounded flows: hierarchical adjoint data assimilation
实现壁界流中的有效状态估计:分层伴随数据同化
  • 批准号:
    2332057
    2332057
  • 财政年份:
    2023
  • 资助金额:
    $ 60.36万
    $ 60.36万
  • 项目类别:
    Standard Grant
    Standard Grant
CAREER: Studies of Chalcogen Bonding-Mediated Assembly towards Porous Crystalline Frameworks, Hierarchical Assemblies, and Multicomponent Materials
职业:硫族键介导的多孔晶体框架组装、分级组装和多组分材料的研究
  • 批准号:
    2143623
    2143623
  • 财政年份:
    2022
  • 资助金额:
    $ 60.36万
    $ 60.36万
  • 项目类别:
    Continuing Grant
    Continuing Grant
CAREER: Towards Efficient and Fast Hierarchical Federated Learning in Heterogeneous Wireless Edge Networks
职业:在异构无线边缘网络中实现高效快速的分层联邦学习
  • 批准号:
    2145031
    2145031
  • 财政年份:
    2022
  • 资助金额:
    $ 60.36万
    $ 60.36万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Meso-scale liquid crystal/polymer phase separation with anisotropic and hierarchical nonuniform structures and development of thermoresponsive light control devices
具有各向异性和分层非均匀结构的介观液晶/聚合物相分离以及热响应光控器件的开发
  • 批准号:
    19K03779
    19K03779
  • 财政年份:
    2019
  • 资助金额:
    $ 60.36万
    $ 60.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
    Grant-in-Aid for Scientific Research (C)