喵ID:sjs0DS免责声明

Rapid Development of an Autonomous Vehicle for the SAE AutoDrive Challenge II Competition

为 SAE AutoDrive Challenge II 竞赛快速开发自动驾驶汽车

基本信息

DOI:
10.4271/2024-01-1980
发表时间:
2024
期刊:
SAE Technical Paper Series
影响因子:
--
通讯作者:
D. Negrut
中科院分区:
文献类型:
--
作者: Sriram Ashokkumar;Anirudh Jayendra;Sam Tobin;Ariel Leykin;Robert Stegeman;Abhiraj Dashora;Bryan Look;Joseph Koenig;Brian Hu;Mason Crooks;Ishaan Mahajan;Pravin Boopathy;Mukund Krishnakumar;Nevindu Batagoda;Han Wang;Aaron Young;Victor Freire;Glenn Bower;Xiangru Xu;D. Negrut研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

The SAE AutoDrive Challenge II is a four-year collegiate competition dedicated to developing a Level 4 autonomous vehicle by 2025. In January 2023, the participating teams each received a Chevy Bolt EUV. Within a span of five months, the second phase of the competition took place in Ann Arbor, MI. The authors of this contribution, who participated in this event as team Wisconsin Autonomous representing the University of Wisconsin–Madison, secured second place in static events and third place in dynamic events. This has been accomplished by reducing reliance on the actual vehicle platform and instead leveraging physical analogs and simulation. This paper outlines the software and hardware infrastructure of the competing vehicle, touching on issues pertaining sensors, hardware, and the software architecture employed on the autonomous vehicle. We discuss the LiDAR-camera fusion approach for object detection and the three-tier route planning and following systems. One of the defining aspects of our approach was leveraging early simulation and the use of physical analogs, which accelerated the development of the autonomy algorithms. In the process, we established a rapid autonomous vehicle development methodology that will anchor our technical effort in the third stage of the SAE AutoDrive Challenge II competition.
SAE Autodrive Challenge II是一项为期四年的大学竞赛,致力于2025年到2025年,旨在开发4级自动驾驶汽车。2023年1月,参与的团队各自获得了雪佛兰Bolt EUV。在密歇根州的安阿伯(Ann Arbor)举行。威斯康星州 - 麦迪逊(Madison)在静态事件中获得了第二名,而在动态事件中获得了第三名,这是通过在实际的车辆平台上减少退休而实现的,而是利用了物理模拟和模拟。涉及有关传感器,硬件和软件体系结构的问题,我们在自动驾驶汽车上讨论了激光摄像机融合方法的方法。对象检测和三层途径计划和以下系统。车辆开发方法将在SAE Autodrive Challenge II竞争的第三阶段奠定我们的技术工作。
参考文献(2)
被引文献(0)
Stanley: The robot that won the DARPA Grand Challenge
DOI:
10.1002/rob.20147
发表时间:
2006-09-01
期刊:
JOURNAL OF FIELD ROBOTICS
影响因子:
8.3
作者:
Thrun, Sebastian;Montemerlo, Mike;Mahoney, Pamela
通讯作者:
Mahoney, Pamela

数据更新时间:{{ references.updateTime }}

D. Negrut
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓