CAREER: Cold plasma intensified perovskite membrane technology for CO2 utilization
职业:用于二氧化碳利用的冷等离子体强化钙钛矿膜技术
基本信息
- 批准号:2235247
- 负责人:
- 金额:$ 53.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Platform chemicals are the essential building blocks used by the chemical processing industries to produce high-value chemical products. Conversion of greenhouse gases (GHG) such as CO2 and CH4 to platform precursors could significantly reduce atmospheric GHG while producing oxygenated chemical feedstocks and fuels. Current production of oxygenated chemicals from GHG requires large-scale, complex, high-pressure reaction processes, and manufacturing operations with significant carbon footprints. Therefore, there is a critical need to explore more sustainable routes to dry methane reforming (DMR), the reaction between CO2 and CH4 to produce highly reactive hydrogen and carbon monoxide. Non-thermal (low temperature) plasma-catalysis processes have recently emerged as an alternative to current DMR. This electrically driven approach will be investigated for one-step production of oxygenated species from GHG under mild conditions, making use of renewable and decentralized electrical power sources, potentially expanding US employment and regional business opportunities. This research program will study the fundamental chemical and physical mechanisms at work in plasma-enhanced conversion of GHG with the goal of reaching chemical processing conditions that are energy flexible and efficient. Over the next five years the research team will focus on understanding plasma chemistry reaction mechanisms and the systematic design of plasma-catalytic membrane reactor concepts capable of on-demand use of renewable electricity. Education and outreach activities include developing an undergraduate/graduate level plasma catalysis class and continuing a STEM Camp for Girl Scouts.In this project, atmospheric low-temperature plasma catalysis will be investigated as an alternative to conventional thermally activated reaction routes to oxygenated fuels and chemical products based on high pressure Dry Methane Reforming (DMR). The key feature of plasma-catalysis is the synergy between the plasma and the catalyst, where the non-equilibrium plasma creates radicals and charged plasma-phase species which react at the catalyst surface to form the chemical product species; however, little is known in terms of fundamental understanding of plasma/catalyst interactions and surface processes. This research will address this knowledge gap by focusing on perovskite catalysts, selected for their unique dielectric and polarization properties. The interaction between the charged species in the plasma and perovskite catalysts may lead to drastic changes in the perovskite structural and surface electronic properties, potentially leading to unprecedented oxygenated species production rates. The in situ diagnostic capabilities of the research team will make possible the systematic synthesis of plasma-enhanced perovskite catalysts designed to operate at low temperature (200 deg C) and atmospheric pressure, opening the door to decentralized and modular production of oxygenated fuels and chemicals from CO2 and CH4. To further improve process performance, the catalyst will be fabricated as a unique macroporous perovskite membrane with the objective of improving selectivity to methanol. The proposed membrane reactor offers the advantages of significantly reduced pressure drop typically found in packed bed reactors enhancing process throughput. Specific research plans focus on: (1) Designing nanocrystalline perovskite membranes for the synthesis of oxygenated chemicals and fuels; (2) Fine tuning the catalytic active sites of selected perovskites for the synthesis of methanol; (3) Evaluating the catalytic performance of perovskite membranes under low-temperature plasma in the conversion of CO2/CH4 mixtures to methanol; (4) Elucidation and understanding of the synergism in plasma-catalyst systems for the synthesis of oxygenated chemical species.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
平台化学品是化学加工业生产高价值化学产品的必不可少的基础。温室气体(GHG)(例如CO2和CH4)转换为平台前体可以显着减少大气温室气体,同时产生含氧化学原料和燃料。当前从温室气体产生的含氧化学物质需要大规模,复杂,高压反应过程以及具有明显碳足迹的制造作业。因此,迫切需要探索更可持续的甲烷改革(DMR),即二氧化碳和CH4之间的反应,以产生高反应性氢和一氧化碳。非热(低温)等离子体催化过程最近已成为当前DMR的替代方案。这种电动驱动的方法将在轻度条件下从温室气体中进行一步生产,从而利用可再生和分散的电力源,从而有可能扩大美国就业和区域商机。该研究计划将研究血浆增强温室气体转化的基本化学和物理机制,目的是达到能量柔性和高效的化学处理条件。在接下来的五年中,研究团队将专注于了解等离子体化学反应机制和血浆催化膜反应器概念的系统设计,能够按需使用可再生电力。教育和外展活动包括开发本科/研究生水平的血浆催化类别,并继续为女童子军提供一个STEM营地。在该项目中,将研究大气中的低温血浆催化作用,以替代传统的热激活反应途径,以基于高压干燥甲烷重新染料(DMR),含氧燃料和化学产品。等离子体催化的关键特征是血浆与催化剂之间的协同作用,在该血浆和催化剂之间,非平衡血浆会产生自由基和带电的等离子相种类,它们在催化剂表面反应形成化学产物物种。但是,从基本了解等离子体/催化剂相互作用和表面过程方面,知之甚少。这项研究将通过专注于钙钛矿催化剂(以其独特的介电和极化特性而选择)来解决这一知识差距。血浆中带电物种与钙钛矿催化剂中的相互作用可能导致钙钛矿结构和表面电子特性发生巨大变化,这可能导致前所未有的氧化物种生产率。研究团队的原位诊断能力将使血浆增强的钙钛矿催化剂的系统合成,旨在在低温(200 c)和大气压下运行,并为分散的含氧燃料和化学物质的分散和模块化生产打开了CO2和CH4的模块化。为了进一步提高过程性能,将催化剂被制造为独特的大孔钙钛矿膜,目的是提高对甲醇的选择性。所提出的膜反应器提供了通常在包装床反应堆增强过程吞吐量中通常发现的压降下降的优势。特定的研究计划的重点是:(1)设计纳米晶钙钛矿膜以合成氧化化学物质和燃料的合成; (2)微调选定钙钛矿的催化活性位点以合成甲醇; (3)评估二氧化碳混合物转化为甲醇的低温等离子体下钙钛矿膜的催化性能; (4)阐明和理解含氧化学物种的血浆催化剂系统中的协同作用。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛的影响来通过评估来获得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Carreon其他文献
Maria Carreon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Carreon', 18)}}的其他基金
Collaborative Research: Rational Design of Alloys with Low-Melting-Point Metals for High-yield, Non-thermal Plasma-assisted Catalytic Production of Ammonia
合作研究:合理设计低熔点金属合金,用于高产率非热等离子体辅助催化生产氨
- 批准号:
2403970 - 财政年份:2023
- 资助金额:
$ 53.87万 - 项目类别:
Standard Grant
CAREER: Cold plasma intensified perovskite membrane technology for CO2 utilization
职业:用于二氧化碳利用的冷等离子体强化钙钛矿膜技术
- 批准号:
2403991 - 财政年份:2023
- 资助金额:
$ 53.87万 - 项目类别:
Continuing Grant
Collaborative Research: Rational Design of Alloys with Low-Melting-Point Metals for High-yield, Non-thermal Plasma-assisted Catalytic Production of Ammonia
合作研究:合理设计低熔点金属合金,用于高产率非热等离子体辅助催化生产氨
- 批准号:
2203166 - 财政年份:2021
- 资助金额:
$ 53.87万 - 项目类别:
Standard Grant
Collaborative Research: Rational Design of Alloys with Low-Melting-Point Metals for High-yield, Non-thermal Plasma-assisted Catalytic Production of Ammonia
合作研究:合理设计低熔点金属合金,用于高产率非热等离子体辅助催化生产氨
- 批准号:
1921438 - 财政年份:2019
- 资助金额:
$ 53.87万 - 项目类别:
Standard Grant
Collaborative Research: Rational Design of Alloys with Low-Melting-Point Metals for High-yield, Non-thermal Plasma-assisted Catalytic Production of Ammonia
合作研究:合理设计低熔点金属合金,用于高产率非热等离子体辅助催化生产氨
- 批准号:
1947303 - 财政年份:2019
- 资助金额:
$ 53.87万 - 项目类别:
Standard Grant
相似国自然基金
基于恒稳态分配理论的寒冷地区多介质逸度模型的构建及其用于我国东北地区PBDEs的研究
- 批准号:42377377
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
寒冷地区城区-街区地表形态对空间碳绩效的影响机理与优化方法研究
- 批准号:52378066
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于“源—汇”耦合的寒冷地区城市住区形态减碳机制与优化路径
- 批准号:52308049
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
后侧下丘脑调节寒冷防御的神经机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
后侧下丘脑调节寒冷防御的神经机制研究
- 批准号:32200820
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Cold plasma intensified perovskite membrane technology for CO2 utilization
职业:用于二氧化碳利用的冷等离子体强化钙钛矿膜技术
- 批准号:
2403991 - 财政年份:2023
- 资助金额:
$ 53.87万 - 项目类别:
Continuing Grant
Optimizing the Use of Long-Acting Antiretrovirals for Youth Living withHIV
优化长效抗逆转录病毒药物对青少年艾滋病毒感染者的使用
- 批准号:
10487556 - 财政年份:2021
- 资助金额:
$ 53.87万 - 项目类别:
Optimizing the Use of Long-Acting Antiretrovirals for Youth Living withHIV
优化长效抗逆转录病毒药物对青少年艾滋病毒感染者的使用
- 批准号:
10679087 - 财政年份:2021
- 资助金额:
$ 53.87万 - 项目类别:
Optimizing the Use of Long-Acting Antiretrovirals for Youth Living withHIV
优化长效抗逆转录病毒药物对青少年艾滋病毒感染者的使用
- 批准号:
10327146 - 财政年份:2021
- 资助金额:
$ 53.87万 - 项目类别:
Urine Colorimetry for Tuberculosis Pharmacokinetics Evaluation in Children and Adults
尿液比色法用于儿童和成人结核病药代动力学评价
- 批准号:
10320620 - 财政年份:2018
- 资助金额:
$ 53.87万 - 项目类别: