STTR Phase I: Registration of Below-Canopy, Above-Canopy, and Satellite Sensor Streams for Forest Inventories
STTR 第一阶段:森林清查树冠下、树冠上和卫星传感器流的登记
基本信息
- 批准号:2234077
- 负责人:
- 金额:$ 27.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader/commercial impact of this Small Business Technology Transfer (STTR) Phase I project is to increase the volume and improve the accuracy of data on the world’s forests. Presently, when collecting data on forests, surveyors must choose between slow, laborious methods, or quick but inaccurate ones. This project uses recent advances in sensors and machine learning to greatly improve data collection speed without sacrificing accuracy. The resulting rich datasets enable the construction of true “digital twins” of forests and open the door for higher fidelity modeling of forest growth trajectories. This information is useful both for timber firms seeking to maximize the potential of their assets and environmental groups projecting how changes today could impact a forest’s performance as a carbon-sink over the long term. The impacts on United States citizens are widespread. Here are two examples: improved efficiency in the timber industry brings down the cost and improves the quality of raw materials and turning forests into denser carbon sinks helps meet climate change goals. The availability of such broad and deep data on forests could also drive a boom in research and understanding about the more complex and nuanced relationships that drive forest health and productivity, launching entirely new sub-industries around forestry.The key technological innovations explored in this STTR Phase I project are in constructing the most high-fidelity forest model (digital twin) by combining disparate information sources, each with their own advantages and disadvantages. Light detecting and ranging (LiDAR) and camera sensors on backpacks provide high-quality inventory metrics nearly 1000 times faster than manual measurements, but still require someone in the forest to wear the backpack. Satellite imagery scales almost instantly to entire forests and also through time with historical data but is limited by the top-down nature of satellites and the resolution they offer, especially when historical and free data sources are considered. Drone-based imagery sits in-between, with advantages and disadvantages of both. In practice, combining information sources that measure in such different ways can be very difficult. In this project, the team explores how to express LiDAR-based metrics to best associate them with top-down imagery from satellites and drones. From these associations, one can then build powerful machine learning models and specialize them to individual forests. This ability may enable the company to provide forest inventories and forest management recommendations to timber companies at any scale: with satellite imagery only or with a combination of backpack-LiDAR and satellite for the highest accuracy over the entire forest.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的更广泛/委托是在收集有关森林的数据时,提高了TA的数量并提高TA的准确性在传感器和机器学习中,可以极大地提高数据收集速度,而没有产生的富数据集,可以使森林的“数字双胞胎”为森林增长轨迹的忠诚开放。 Environtal UPS预测今天的变化如何影响森林,这是两个例子:提高木材行业的效率带来了成本,并提高了原材料的质量和转向森林的质量气候变化目标。通过将不同的信息源结合在一起,最高级的模型(数字双胞胎),每个型号都具有自己的优势和缺点。测量值,但仍需要森林中的某人戴上图像几乎可以缩放到整个森林来源是在实践中的优点和缺点,以这种不同的方式来探讨了这两个项目的优势。他们与卫星和无人机的顶级图像相结合。被认为是值得对基金会的知识分子和更广泛的不足影响审查标准进行舒适评估的曲调的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter McHale其他文献
Peter McHale的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
热带河口特有鱼类尖鳍鲤早期生活史不同阶段的栖息地利用变化及驱动机制
- 批准号:32360917
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
PPP项目跨阶段监管机制研究
- 批准号:72301115
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗生素对不同生长阶段蓝藻光合电子传递和生理代谢的影响及分子机制研究
- 批准号:52300219
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多活性纳米酶多靶点全阶段治疗特发性肺纤维化
- 批准号:32371438
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于现代监测的湘西惹迷洞MIS2阶段石笋碳同位素和微量元素记录重建研究
- 批准号:42371164
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase I: Novel Camera-Projector Device Leveraging Markerless Skin Registration and Projected Augmented Reality Software to Enable Navigation for Minimally Invasive Procedures
SBIR 第一阶段:新型相机投影仪设备利用无标记皮肤配准和投影增强现实软件实现微创手术导航
- 批准号:
2321906 - 财政年份:2024
- 资助金额:
$ 27.5万 - 项目类别:
Standard Grant
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Ultra-precision clinical imaging and detection of Alzheimers Disease using deep learning
使用深度学习进行超精密临床成像和阿尔茨海默病检测
- 批准号:
10643456 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Toward Patient-Specific Computational Modeling of Tricuspid Valve Repair in Hypoplastic Left Heart Syndrome
左心发育不全综合征三尖瓣修复的患者特异性计算模型
- 批准号:
10643122 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别:
Quantitative systems biology of glioblastoma cells and their interactions with the neuronal and immunological milieu
胶质母细胞瘤细胞的定量系统生物学及其与神经元和免疫环境的相互作用
- 批准号:
10729273 - 财政年份:2023
- 资助金额:
$ 27.5万 - 项目类别: