Collaborative Research: CCRI: New: A Research News Recommender Infrastructure with Live Users for Algorithm and Interface Experimentation
合作研究:CCRI:新:研究新闻推荐基础设施与实时用户进行算法和界面实验
基本信息
- 批准号:2232553
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-15 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Machine learning recommender systems personalize users’ experiences online by ranking and selecting items to present based on users’ past behavior. For example, when a user visits an online retailer, the products shown are selected by a recommender system designed to help one find things to buy and to increase the vendors sales. Recommender systems are also behind most online news sources, and they can shape which news people see. Given the importance of recommender systems to individual choice, it is critical for researchers to be able to carry out studies to evaluate different designs and their impact on the users of the system. But conducting such studies is beyond the resources of most researchers. To get meaningful results requires building and sustaining a community of willing users who have given their permission to be studied. As a result, the amount of experimental research – and specifically experimental research on long-term users of a system – has plummeted. Almost all such studies are conducted by commercial recommendation platforms and their results are rarely made known to the public. This project is designed to develop a shared news recommender system specifically to enable researchers nationwide to be able to carry out experiments and learn just how different algorithms and interfaces affect users. This should create the knowledge that will allow the community to fully understand the impact of these systems and design new recommender systems that can enhance fairness and equity. When complete, this research infrastructure will support researchers in answering critical questions about how complex and often opaque recommender systems affect user behavior and to test new systems that can improve these systems and their outcomes.This community-centered project will design and build an experimental news recommender community infrastructure to support research in personalization and recommender systems, AI and machine learning, natural language processing, human-computer interaction, social computing, and other fields that would benefit from the ability to carry out online field experiments with long-term users of a system. The cloud-based software infrastructure includes a pluggable recommendation architecture in which researchers can deploy custom algorithms and interfaces, a feed of news articles starting with those obtained through a partnership with the Associated Press, experiment-support modules including consent, payment, and surveying of subjects, and support for two news interfaces—first a news digest and then a progressive web news browser. The infrastructure will maintain a set of long-term consented users, provide extensive support to researchers including overarching IRB protocols, training, sample experiments, datasets and metrics, and live support through a researcher support team. It will be governed by a community advisory board drawn from the researcher community with representatives of the content providers and end-users and charged with allocating experiment slots and steering the development and management of the infrastructure. By developing and deploying this research infrastructure, the investigators seek to empower individuals and small groups to study important questions in recommender systems, including questions about how different algorithms and interfaces can alter the diversity of sources and viewpoints represented and provide users with greater understanding and control over the content they explore. The investigators come from five institutions spread across the country and will in turn assemble and train a diverse team to take on this technically challenging and important work.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习推荐系统通过根据用户过去的行为排名和选择要呈现的商品来个性化用户的在线体验。例如,当用户访问在线零售商时,推荐系统会选择显示的产品,旨在帮助人们找到想要的东西。推荐系统也是大多数在线新闻来源的背后,它们可以决定人们看到的新闻。鉴于推荐系统对个人选择的重要性,研究人员能够进行研究至关重要。评估不同的设计及其对用户的影响但进行此类研究超出了大多数研究人员的资源范围,需要建立和维持一个愿意进行研究的用户社区,因此需要进行大量的实验研究。几乎所有此类研究都是由商业推荐平台进行的,其结果很少为公众所知。该项目旨在开发一个专门为全国研究人员提供支持的共享新闻推荐系统。能够进行实验并了解不同的算法和这应该创造知识,使社区能够充分了解这些系统的影响,并设计可以增强公平性和公平性的新推荐系统。完成后,该研究基础设施将支持研究人员回答有关复杂性的关键问题。不透明的推荐系统通常会影响用户行为,并测试可以改进这些系统及其结果的新系统。这个以社区为中心的项目将设计和构建一个实验性新闻推荐社区基础设施,以支持个性化和推荐系统、人工智能和机器学习方面的研究, 自然语言处理,人机交互、社交计算等将受益于与系统的长期用户进行在线现场实验的能力。基于云的软件基础设施包括可插入的推荐架构,研究人员可以在其中部署自定义算法和。界面,从与美联社合作获得的新闻文章开始,实验支持模块包括同意、付款和受试者调查,以及对两个新闻界面的支持——首先是新闻摘要,然后是渐进式网络新闻浏览器的基础设施将维护一组。长期同意的用户,为广泛的研究人员提供支持,包括总体 IRB 协议、培训、样本实验、数据集和指标,以及通过研究人员支持团队提供的实时支持。它将由来自研究人员社区的代表组成的社区顾问委员会进行管理。内容提供商和最终用户的职责,负责分配实验时段并指导基础设施的开发和管理。通过开发和部署这一研究基础设施,研究人员力求使个人和小组能够研究推荐系统中的重要问题,包括。关于不同算法和界面可以改变所代表的来源和观点的多样性,并使用户更好地理解和控制他们探索的内容。调查人员来自全国各地的五个机构,他们将组建和培训一支多元化的团队来应对这一技术挑战。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Ekstrand其他文献
Making Algorithms Public: Reimagining Auditing from Matters of Fact to Matters of Concern
公开算法:重新构想从事实问题到关注问题的审计
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
R. Stuart;Irani;L. Irani;Kathryne Metcalf;Magdalena Donea;Julia Kott;Jennifer Chien;Emma Jablonski;Christian Sandvig;Karrie Karrahalios;Peaks Krafft Meg Young;Mike Katell;Michael Ekstrand;Katie Shilton;C. Kelty;Kristen Vaccaro;Mary Anne - 通讯作者:
Mary Anne
Responsible AI Research Needs Impact Statements Too
负责任的人工智能研究也需要影响报告
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Alexandra Olteanu;Michael Ekstrand;Carlos Castillo;Jina Suh - 通讯作者:
Jina Suh
Michael Ekstrand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Ekstrand', 18)}}的其他基金
CAREER: User-Based Simulation Methods for Quantifying Sources of Error and Bias in Recommender Systems
职业:基于用户的模拟方法,用于量化推荐系统中的错误和偏差来源
- 批准号:
2415042 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: CCRI: New: A Research News Recommender Infrastructure with Live Users for Algorithm and Interface Experimentation
合作研究:CCRI:新:研究新闻推荐基础设施与实时用户进行算法和界面实验
- 批准号:
2409199 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CAREER: User-Based Simulation Methods for Quantifying Sources of Error and Bias in Recommender Systems
职业:基于用户的模拟方法,用于量化推荐系统中的错误和偏差来源
- 批准号:
1751278 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似国自然基金
离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
- 批准号:52364012
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
- 批准号:32301770
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
- 批准号:52302362
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
- 批准号:72302108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
- 批准号:32300133
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CISE-MSI: RCBP-ED: CCRI: TechHouse Partnership to Increase the Computer Engineering Research Expansion at Morehouse College
合作研究:CISE-MSI:RCBP-ED:CCRI:TechHouse 合作伙伴关系,以促进莫尔豪斯学院计算机工程研究扩展
- 批准号:
2318703 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
- 批准号:
2347617 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: NEW: Building a Batteryless Computing Community through Access to Education, Testbeds, and Tools
合作研究:CCRI:新:通过获得教育、测试平台和工具构建无电池计算社区
- 批准号:
2235002 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: CCRI: ENS: Enhanced Open Networked Airborne Computing Platform
合作研究:研究基础设施:CCRI:ENS:增强型开放网络机载计算平台
- 批准号:
2235160 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: Syntactic Differencing Infrastructure for Software Evolution Research
合作研究:CCRI:新:软件进化研究的句法差异基础设施
- 批准号:
2232594 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant