SaTC: CORE: Small: Towards Deceptive and Domain-Specific Cyber-Physical Honeypots
SaTC:核心:小型:走向欺骗性和特定领域的网络物理蜜罐
基本信息
- 批准号:2231651
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Cyber-physical critical infrastructures provide management and control capabilities for mission-critical utilities such as power grids. Programmable logic controllers (PLCs) play a key role as they serve as a convenient bridge between the cyber and the physical worlds. PLCs’ critical roles have made them the target of sophisticated cyberattacks that are designed to disrupt their operation, which creates both social unrest and financial losses. In this context, cyber honeypots have been shown to be highly valuable tools for collecting data to better understand the many different strategies and objectives of the attackers. The project’s novelty is to develop a new domain-specific stealthy honeypot for cyber-physical critical infrastructures and specifically PLC controllers. The solutions allow for active data collection using autonomous interactions with attacker’s software to activate its malicious capabilities. The project's broader significance and importance are to provide guidelines for researchers and practitioners looking to incorporate honeypots and security methods into cyber-physical systems (CPS) and embedded controllers. For complete stealth, the solutions leverage air-gapped observations of the malware behavior through physical side channels such as PLC processor power signal produced by the on-device malicious code execution. For deception, the techniques leverage mathematical models and physics-informed neural networks to provide a realistic emulation of the physical dynamics and a misleading physical process interface to the PLC input-output ports. The research outcomes address the above-mentioned semantic gap via an automated binary reverse engineering of the malicious controller code to extract the high-level adversarial objectives from low-level controller software execution traces. This enables the classification of adversaries dynamically using online data-driven meta-learning algorithms. This work transforms how people approach the problem of threat intelligence and modeling in CPS, in that the holistic view cognizant of both cyber and physical factors becomes widespread.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
网络物理关键基础设施为关键任务电网(例如电网)提供管理和控制功能。可编程逻辑控制器(PLC)起着关键作用,因为它们是网络和物理世界之间的便捷桥梁。 PLC的关键作用使它们成为了旨在破坏其运营的复杂网络攻击的目标,从而造成了社会动荡和财务损失。在这种情况下,网络蜜饯已被证明是收集数据的高度有价值的工具,以更好地了解攻击者的许多不同策略和目标。该项目的新颖性是为网络物理关键基础设施,特别是PLC控制器开发一种新的特定领域的隐身蜜罐。该解决方案允许使用与Attacker的软件进行自主互动的活动收集,以激活其恶意功能。该项目的重要意义和重要性是为希望将蜜罐和安全方法纳入网络物理系统(CPS)和嵌入式控制器的研究人员和从业者提供指南。为了完整的隐身,解决方案通过物理侧渠道(例如,在设备恶意代码执行中产生的PLC处理器电源信号)对恶意软件行为进行空白观察。为了欺骗,这些技术利用数学模型和物理知识的神经网络提供对物理动力学的现实仿真以及误导性的物理过程接口到PLC输入输出端口。研究结果通过恶意控制器代码的自动二进制逆向工程来解决上述语义差距,以从低级控制器软件执行跟踪中提取高级对抗性目标。这样可以使用在线数据驱动的元学习算法动态地对对手进行分类。这项工作改变了人们如何处理CPS中威胁智力和建模的问题,因为对网络和物理因素的整体观点都变得广泛。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子和更广泛影响的评估标准通过评估来评估的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saman Zonouz其他文献
Control Corruption without Firmware Infection: Stealthy Supply Chain Attacks via PLC Hardware Implants (MalTag)
在没有固件感染的情况下控制腐败:通过 PLC 硬件植入 (MalTag) 进行隐形供应链攻击
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Mingbo Zhang;Saman Zonouz - 通讯作者:
Saman Zonouz
Compromising Industrial Processes using Web-Based Programmable Logic Controller Malware
使用基于 Web 的可编程逻辑控制器恶意软件危害工业流程
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ryan Pickren;Tohid Shekari;Saman Zonouz;R. Beyah - 通讯作者:
R. Beyah
Saman Zonouz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saman Zonouz', 18)}}的其他基金
Collaborative Research: Next Big Research Challenges in Cyber-Physical Systems
协作研究:网络物理系统的下一个重大研究挑战
- 批准号:
2240222 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Srch3D: Efficient 3D Model Search via Online Manufacturing-specific Object Recognition and Automated Deep Learning-Based Design Classification
CPS:中:协作研究:Srch3D:通过在线制造特定对象识别和基于自动化深度学习的设计分类进行高效 3D 模型搜索
- 批准号:
2240733 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: Next Big Research Challenges in Cyber-Physical Systems
协作研究:网络物理系统的下一个重大研究挑战
- 批准号:
2131695 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Srch3D: Efficient 3D Model Search via Online Manufacturing-specific Object Recognition and Automated Deep Learning-Based Design Classification
CPS:中:协作研究:Srch3D:通过在线制造特定对象识别和基于自动化深度学习的设计分类进行高效 3D 模型搜索
- 批准号:
1932146 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
I-Corps: Data Analytics and Automated Candidate Assessment
I-Corps:数据分析和自动候选人评估
- 批准号:
1744294 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SaTC: CORE: Medium: Collaborative: Privacy-Aware Trustworthy Control as a Service for the Internet of Things (IoT)
SaTC:核心:媒介:协作:物联网 (IoT) 的隐私意识可信控制即服务
- 批准号:
1703782 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Trustworthy Cyber-Physical Additive Manufacturing with Untrusted Controllers
CPS:中:协作研究:具有不可信控制器的值得信赖的网络物理增材制造
- 批准号:
1739467 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Just-Ahead-Of-Time Verification of Cyber-Physical Critical Infrastructures
CPS:协同:协作研究:网络物理关键基础设施的分布式实时验证
- 批准号:
1446471 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CAREER: Trustworthy and Adaptive Intrusion Tolerance Capabilities in Cyber-Physical Critical Infrastructures
职业:网络物理关键基础设施中值得信赖和自适应的入侵容忍能力
- 批准号:
1453046 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
EAGER: Cybercrime Susceptibility in the Sociotechnical System: Exploration of Integrated Micro- and Macro-Level Sociotechnical Models of Cybersecurity
EAGER:社会技术系统中的网络犯罪敏感性:网络安全的微观和宏观综合社会技术模型的探索
- 批准号:
1519243 - 财政年份:2014
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
- 批准号:82303969
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
- 批准号:82304474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肾去交感神经术促进下丘脑室旁核小胶质细胞M2型极化减轻心衰损伤的机制研究
- 批准号:82370387
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
- 批准号:32300220
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
- 批准号:82301603
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
- 批准号:
2343387 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
- 批准号:
2341206 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant