Collaborative Research: Omnidirectional Perching on Dynamic Surfaces: Emergence of Robust Behaviors from Joint Learning of Embodied and Motor Control

合作研究:动态表面上的全方位栖息:从具身控制和运动控制的联合学习中出现鲁棒行为

基本信息

  • 批准号:
    2230320
  • 负责人:
  • 金额:
    $ 70万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

This project will endow small aerial vehicles (e.g., quadcopters) with autonomous and universal perching capability on stationary or moving surfaces of arbitrary orientations, thereby expanding their operational capabilities in the areas of reconnaissance, inspection, surveillance, environmental monitoring, and search and rescue. For example, it will enable them to land on a sailing ship that heaves and sways with the sea, to hitchhike onto a moving ground or aerial platform for charging or safety, to assist a human-pilot to easily land a drone on self-selected targets (e.g., on walls, powerlines, and underneath a bridge). The research will focus on the co-design of embodied physical and computational intelligence through an integrated learning framework to achieve robust perching in most circumstances. The project will also create a STEM educational framework for K-12 students through visually appealing, interactive robotic flight and perching experiments to introduce multidisciplinary concepts in robotics, machine learning, mechanical design, smart materials, and flight principles. Furthermore, the research outcomes will be integrated into various educational and outreach modules for undergraduate students as well as general workforce development, leveraging the newly NSF-funded Center for Autonomous Air Mobility and Sensing (CAAMS) at Pennsylvania State University.The objective of this research is to combine the design and learning modalities of both physically embodied intelligence and computational intelligence to enable a wide range of dynamic touchdown mechanisms necessary for robust omnidirectional perching of small aerial vehicles. Physical intelligence will be achieved via a novel landing gear system with an array of bio-inspired, miniature robotic tarsi, whose compliance can be rapidly tuned on the spot during the touchdown. Computational intelligence will be achieved via 1) the initiation and control of perching angular maneuvers by learning predictive policy regions and the associated policy mapping for motor control and 2) vision based, optical-flow-constrained tau-guidance that simultaneously brings a robot into the target policy region and the target landing location. Finally, computational intelligence will be integrated with physical intelligence through a two-layered framework composed of joint learning of: a) mechanical design and motor control policies and b) embodied and motor control policies, respectively, as the former component would control the bio-inspired tarsi compliance and the latter would control the aerial maneuvers. In conclusion, this project will advance knowledge in the co-design, integration, interplay, and trade-offs between computational and physical intelligence in robots to achieve novel and robust capabilities. This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将赋予小型飞行器(例如四轴飞行器)在任意方向的静止或移动表面上自主且通用的栖息能力,从而扩展其在侦察、检查、监视、环境监测和搜救等领域的作战能力。例如,它将使他们能够降落在随海水起伏和摇摆的帆船上,搭便车到移动的地面或空中平台上进行充电或安全,协助飞行员轻松地将无人机降落在自选的飞机上。目标(例如,墙壁上、电线上和桥下)。该研究将侧重于通过集成学习框架对实体物理和计算智能进行协同设计,以在大多数情况下实现稳健的栖息。该项目还将通过视觉吸引力、交互式机器人飞行和栖息实验,为 K-12 学生创建一个 STEM 教育框架,介绍机器人、机器学习、机械设计、智能材料和飞行原理方面的多学科概念。此外,利用美国国家科学基金会 (NSF) 新资助的宾夕法尼亚州立大学自主空气流动和传感中心 (CAAMS),研究成果将被整合到本科生的各种教育和外展模块以及一般劳动力发展中。 这项研究的目标是将物理体现智能和计算智能的设计和学习模式结合起来,以实现小型飞行器稳健的全向栖息所需的各种动态着陆机制。物理智能将通过一种新颖的起落架系统来实现,该系统具有一系列仿生微型机器人跗节,其顺应性可以在着陆期间当场快速调整。计算智能将通过以下方式实现:1)通过学习预测策略区域和相关的运动控制策略映射来启动和控制栖息角度机动;2)基于视觉、光流约束的 tau 引导,同时将机器人带入目标政策区域和目标落地地点。最后,计算智能将通过一个两层框架与物理智能集成,该框架由联合学习组成:a)机械设计和运动控制策略以及b)体现和运动控制策略,因为前一个组件将控制生物激发跗节的顺从性,后者将控制空中机动。总之,该项目将推进机器人的协同设计、集成、相互作用以及计算智能和物理智能之间的权衡方面的知识,以实现新颖而强大的功能。该项目得到了机器人学跨部门基础研究项目的支持,该项目由工程理事会 (ENG) 和计算机与信息科学与工程理事会 (CISE) 共同管理和资助。该奖项反映了 NSF 的法定使命,并被认为值得通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bo Cheng其他文献

The role of cermet interlayer on tribological behaviors of DLC/Cr3C2–NiCr duplex coating from the perspective of carbonaceous transfer film formation
从碳质转移膜形成角度研究金属陶瓷中间层对DLC/Cr3C2-NiCr双相涂层摩擦学行为的影响
  • DOI:
    10.1016/j.ceramint.2022.08.261
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Yaoting Zhao;Dongqing He;Wensheng Li;Qiang Song;Haimin Zhai;Bo Cheng
  • 通讯作者:
    Bo Cheng
Change Detection from Landsat TM Images Using Change Vector Analysis
使用变化矢量分析对 Landsat TM 图像进行变化检测
  • DOI:
    10.4028/www.scientific.net/amr.268-270.590
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoyang Song;Bo Cheng;Tengfei Long
  • 通讯作者:
    Tengfei Long
A cost-aware auto-scaling approach using the workload prediction in service clouds
使用服务云中的工作负载预测的成本感知自动扩展方法
  • DOI:
    10.1007/s10796-013-9459-0
  • 发表时间:
    2013-10
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Jingqi Yang;Chuanchang Liu;Yanlei Shang;Bo Cheng;Zexiang Mao;Chunhong Liu;Lisha Niu;Junliang Chen
  • 通讯作者:
    Junliang Chen
Study on the gas emission law of cylinder-type coal cuttings based on time-varying diffusion coefficient
基于时变扩散系数的圆筒型煤屑瓦斯涌出规律研究
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiansheng Cheng;Huiming Yang;Bo Cheng
  • 通讯作者:
    Bo Cheng
Microstructure evolution and elevated temperature wear performance of in-situ laser-synthesized Ti-25Al-17Nb coating on Ti-6Al-4V
Ti-6Al-4V 上原位激光合成 Ti-25Al-17Nb 涂层的微观结构演变和高温磨损性能
  • DOI:
    10.1016/j.triboint.2022.107807
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Wensheng Li;Wenbin Zhang;Haimin Zhai;Shuncai Wang;Qiang Song;Robert J.K. Wood;Bo Cheng;Dongqing He;Chunzhi Zhang
  • 通讯作者:
    Chunzhi Zhang

Bo Cheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bo Cheng', 18)}}的其他基金

CPS: Medium: Collaborative Research: Towards optimal robot locomotion in fluids through physics-informed learning with distributed sensing
CPS:中:协作研究:通过分布式传感的物理信息学习实现流体中的最佳机器人运动
  • 批准号:
    1932130
  • 财政年份:
    2020
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Vision-guided Control of Robust Perching: From Biological to Robotic Flyers
RI:小型:协作研究:视觉引导的稳健栖息控制:从生物到机器人传单
  • 批准号:
    1815519
  • 财政年份:
    2018
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
CAREER: Towards Integrated Understanding and Informed Mimicry of Insect Flight Mechanics and Control with Application to Micro Air Vehicles
职业:昆虫飞行力学和控制的综合理解和知情模仿及其在微型飞行器中的应用
  • 批准号:
    1554429
  • 财政年份:
    2016
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant

相似国自然基金

烟雾环境下基于全向扫描毫米波雷达的无人车辆自主导航算法研究
  • 批准号:
    52372415
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
雷达回波精细处理理论与人体状态全向感知技术研究
  • 批准号:
    62301064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于透翅蝶准周期微锥结构的全向可调控光学器件仿生研究
  • 批准号:
    52305301
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
准周期序列介质全向高反膜的优化机理和制备研究
  • 批准号:
    12374398
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于SiPM阵列的水下全向光通信技术研究
  • 批准号:
    62371148
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Omnidirectional Perching on Dynamic Surfaces: Emergence of Robust Behaviors from Joint Learning of Embodied and Motor Control
合作研究:动态表面上的全方位栖息:从具身控制和运动控制的联合学习中出现鲁棒行为
  • 批准号:
    2230321
  • 财政年份:
    2023
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Novel and Efficient Seabed Ring Anchor for Omnidirectional Loading
GOALI/合作研究:用于全向加载的新型高效海底环锚
  • 批准号:
    1936901
  • 财政年份:
    2020
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Novel and Efficient Seabed Ring Anchor for Omnidirectional Loading
GOALI/合作研究:用于全向加载的新型高效海底环锚
  • 批准号:
    1936942
  • 财政年份:
    2020
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Novel and Efficient Seabed Ring Anchor for Omnidirectional Loading
GOALI/合作研究:用于全向加载的新型高效海底环锚
  • 批准号:
    1936939
  • 财政年份:
    2020
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Elucidation of the irregular erythrocyte antibodies-related delayed hemolytic transfusion reaction - Promotion of the prospective collaborative study -
阐明与不规则红细胞抗体相关的迟发性溶血性输血反应 - 推进前瞻性合作研究 -
  • 批准号:
    26860366
  • 财政年份:
    2014
  • 资助金额:
    $ 70万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了