RII Track-4:NSF:Understanding the Fundamental Physics of Acousto-Magnetic Microswimmers to Realize Precise, Tunable Motion at Microscales
RII Track-4:NSF:了解声磁微型游泳器的基础物理学,以实现微尺度的精确、可调运动
基本信息
- 批准号:2229636
- 负责人:
- 金额:$ 18.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Microscale synthetic devices (or microswimmers) that can offer precise and controllable motion at microscales have the potential to transform healthcare and bioengineering. For example, these devices can provide direct access to complex regions of the human body through on-board imaging and wireless data transmission to enable targeted drug delivery and localized medical interventions. However, despite considerable progress in microscale propulsion research, controlled, programmable and biocompatible motion of microswimmers is yet to be realized. This project combines external acoustic and magnetic fields to achieve tunable and computationally predictable motion at microscales. To this end, the PI will integrate his computational methods with experimental measurements using state-of-the-art fabrication and characterization facilities at the University of Pennsylvania. This systematic investigation will generate crucial insights into microscale propulsion and will provide a comprehensive understanding of microswimmer motion and its relation to acoustic and magnetic fields. This project will establish a long-term collaboration between the PI’s home institution of the University of Nebraska-Lincoln and the University of Pennsylvania to elucidate the fundamental mechanisms that govern the microswimmer motion.This Research Infrastructure Improvement Track-4 EPSCoR Research Fellows (RII Track-4) project would provide a fellowship to an Assistant Professor and training for a graduate student at the University of Nebraska-Lincoln (UNL). Synthetic devices (microswimmers) that offer controlled, powered, autonomous motion at microscales can enable novel applications such as diagnostic sensing and targeted drug delivery. However, an ideal propulsion strategy that combines advanced navigational capabilities with excellent biocompatibility is yet to be realized. The overarching goal of this research is to combine acoustic and magnetic fields to achieve controlled motion at microscales. To this end, the PI will integrate a novel fluid-structure interaction computational framework with advanced experimental approaches to perform extensive characterization of microswimmer motion and develop a predictive computational capability that can relate the microswimmer motion with external fields. The PI will adopt an integrated computational and experimental approach by working in collaboration with a team at the University of Pennsylvania to leverage state-of-the-art fabrication and characterization facilities for understanding microswimmer motion. Objectives will include to: (1) understand the relation between acoustic frequency, bubble oscillation modes, and the flow field around the microswimmer; (2) relate microswimmer trajectories with the external acoustic and magnetic fields; and (3) identify novel microswimmer designs and functionalities by exploring the parametric space via an integrated computational and experimental approach. This fellowship will lead to new fundamental knowledge on the physical underpinnings of acousto-magnetic microswimmers and will facilitate novel microswimmer trajectories, functionalities, and applications. Ultimately, the PI will utilize the knowledge gained during this fellowship to advance research infrastructure at the University of Nebraska-Lincoln and sustain a long-term collaborative research effort for microscale propulsion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可以在显微镜下提供精确和受控运动的微观合成设备(或微晶状体)具有改变医疗保健和生物工程的潜力。例如,这些设备可以通过板载成像和无线数据传输直接访问人体复杂区域,以实现目标药物输送和局部医疗干预措施。然而,尽管在微观推进研究方面取得了长足的进步,但尚待实现Microswimmers的控制,可编程和生物相容性运动。该项目结合了外部声学和磁场,以实现显微镜下的可调和计算可预测的运动。为此,PI将使用宾夕法尼亚大学的最先进的制造和表征设施将他的计算方法与实验测量进行整合。这项系统的投资将产生对微观推进的关键见解,并将对微观运动员运动及其与声学和磁场的关系提供全面的了解。 This project will establish a long-term collaboration between the PI’s home institution of the University of Nebraska-Lincoln and the University of Pennsylvania to elucidate the fundamental mechanisms that govern the microswimmer motion.This Research Infrastructure Improvement Track-4 EPSCoR Research Fellows (RII Track-4) project would provide a fellowship to an Assistant Professor and training for a graduate student at the University of内布拉斯加州 - 林肯(UNL)。在显微镜下提供受控,动力,自动运动的合成设备(Microswimmers)可以实现新颖的应用,例如诊断感官和靶向药物输送。但是,将先进的导航能力与出色的生物相容性相结合的理想推进策略仍有待实现。这项研究的总体目标是将声学和磁场结合起来,以实现显微镜的受控运动。为此,PI将将新型流体结构相互作用的计算框架与先进的实验方法整合在一起,以对微观运动员运动进行广泛的表征,并开发可预测的计算能力,该计算能力可以将微功能运动与外部磁场相关联。 PI将通过与宾夕法尼亚大学的团队合作利用最先进的制造和表征设施来理解MicroSwimmer运动,以采用综合的计算和实验方法。目标将包括:(1)了解声学频率,气泡振荡模式和微型威格斯周围的流场之间的关系; (2)将微型维格默轨迹与外部声学和磁场相关联; (3)通过通过集成的计算和实验方法探索参数空间来识别新型的微型游泳器设计和功能。该奖学金将导致有关声学磁化微武器的物理基础的新的基本知识,并将促进新型的微晶状体轨迹,功能和应用。最终,PI将利用该奖学金中获得的知识来推进内布拉斯加 - 林肯大学的研究基础设施,并维持微观推进的长期合作研究。该奖项反映了NSF的法定使命,并通过使用基金会的知识分子优点和更广泛的审查标准评估来诚实地获得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nitesh Nama其他文献
Nitesh Nama的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
石羊河上游径流水源追踪量化的模拟研究
- 批准号:42301153
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向复杂场景的说话人追踪关键技术研究
- 批准号:62306029
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单波段机载LiDAR测深的瞬时海面确定及光线追踪
- 批准号:42304051
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
用户兴趣迁移现象下基于图神经网络的舆情追踪技术研究
- 批准号:62302199
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于量子电压动态追踪补偿的精密磁通测量方法研究
- 批准号:52307021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:
2327025 - 财政年份:2024
- 资助金额:
$ 18.51万 - 项目类别:
Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 18.51万 - 项目类别:
Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 18.51万 - 项目类别:
Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
- 批准号:
2327267 - 财政年份:2024
- 资助金额:
$ 18.51万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 18.51万 - 项目类别:
Standard Grant