RII Track4: FAST Heat Transfer Enhancement of Cold Plates using Vortex Generators

RII Track4:使用涡流发生器快速增强冷板传热

基本信息

  • 批准号:
    2229434
  • 负责人:
  • 金额:
    $ 17.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The rapid development of technology has resulted in higher performance and smaller size in electronics. With the improvement of circuit density and faster operating frequency, more heat is dissipated by the electronics. Due to the considerable increase in heat dissipation, traditional heat removal system employing heat sink and fan often becomes insufficient for the modern electronics to maintain within the operating temperature. Therefore, this research is driven by the need to develop an advanced thermal management system to remove the dissipated heat sufficiently and maintain the electronics below the operating temperature for better performance and high reliability. Through the collaboration with the NASA Johnson Space Center, an advanced cold plate heat exchanger will be designed and developed in this project. This development will result in the ability to remove heat more efficiently and effectively by using vortex generators (VGs), especially for the electronics in human spacecraft. When better liquid cooling in cold plates is achieved, it can lead to significant energy savings as well as the reduction of the equipment size and weight. Eventually, this research can support the design, development, and implementation of the next generation of thermal management systems for the electronics in spacecraft applications. Cold plates have liquid coolant flow passages bounded by metallic walls. The use of vortex generators (VGs) in the flow passages has a great potential to enhance heat transfer while minimizing the weight and pressure drop penalties. Therefore, the objective of this research is to show that the multiscale vortex structures induced by microscale VGs can transfer and transport thermal energy more efficiently and effectively in cold plates. Specifically, this research project will include 1) development of an advanced cold plate heat exchanger using multiple micro-VGs, 2) investigation of the effects of the vortical structures induced by micro-VGs on convective heat transfer, and 3) optimization of the liquid coolant flow passages with specific emphasis on cold plates in human spacecraft. It is expected that the vortical flows induced by micro-VGs will disrupt the hydraulic/thermal boundary layers and will promote the flow instabilities and the formation of secondary coherent structures that govern meso- and micro-mixing mechanisms. For thermal analysis, fluid temperature, thermal efficiency, Nusselt number, and convection heat transfer coefficient will be evaluated experimentally. The local surface temperature distributions of the cold plate will also be measured using infrared (IR) thermography. Furthermore, the coolant flow passage configurations will be modified based on the experimental results to achieve the uniform temperature distributions reducing the locally concentrated heat spots. Eventually, success of this research project will lead to the thermal performance enhancement of cold plates, thereby reducing of the equipment size/weight and saving energy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
技术的快速发展导致电子产品的性能较高和尺寸较小。随着电路密度和更快的工作频率的提高,电子设备消散了更多的热量。由于散热量的大幅增加,采用散热器和风扇的传统去除系统通常不足以使现代电子设备在工作温度内保持。因此,这项研究的驱动是由开发高级热管理系统以充分去除耗散热量并将电子设备保持在工作温度以下以提高性能和高可靠性的需要的驱动。通过与NASA Johnson航天中心的合作,将在该项目中设计和开发先进的冷盘热交换器。这种发展将导致通过使用涡流发生器(VG),特别是对于人航天器中的电子产品,可以更有效地去除热量。当实现冷板中更好的液体冷却时,它可能会导致大量的能源节省以及设备尺寸和重量的减小。最终,这项研究可以支持航天器应用中电子产品的下一代热管理系统的设计,开发和实施。冷板的液体冷却液流量通道由金属壁界定。在流通道中使用涡流发生器(VGS)具有增强传热的巨大潜力,同时最大程度地减少了重量和压力下降的惩罚。因此,这项研究的目的是表明,微观VGS诱导的多尺度涡旋结构可以在冷板中更有效,有效地传输和运输热能。具体而言,该研究项目将包括1)使用多个微VGS开发先进的冷板热交换器,2)对微VG诱导的涡度结构对对流传热诱导的涡度结构的影响,以及3)优化液体冷却液流量传递,并在人类航天飞机中对冷板进行了特定的强调。预计由微VG诱导的涡流流将破坏液压/热边界层,并将促进流动不稳定性和控制中含量和微连接机制的二级相干结构的形成。为了进行热分析,将通过实验评估流体温度,热效率,Nusselt数和对流传热系数。冷板的局部表面温度分布也将使用红外(IR)热成像来测量。此外,将根据实验结果来修改冷却液流量通过构型,以达到均匀的温度分布,从而减少了局部浓缩的热点。最终,该研究项目的成功将导致冷板的热绩效增强,从而降低设备的尺寸/重量和节省能源。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛的影响来通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeongmoon Park其他文献

Jeongmoon Park的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了