RII Track4: FAST Heat Transfer Enhancement of Cold Plates using Vortex Generators

RII Track4:使用涡流发生器快速增强冷板传热

基本信息

  • 批准号:
    2229434
  • 负责人:
  • 金额:
    $ 17.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The rapid development of technology has resulted in higher performance and smaller size in electronics. With the improvement of circuit density and faster operating frequency, more heat is dissipated by the electronics. Due to the considerable increase in heat dissipation, traditional heat removal system employing heat sink and fan often becomes insufficient for the modern electronics to maintain within the operating temperature. Therefore, this research is driven by the need to develop an advanced thermal management system to remove the dissipated heat sufficiently and maintain the electronics below the operating temperature for better performance and high reliability. Through the collaboration with the NASA Johnson Space Center, an advanced cold plate heat exchanger will be designed and developed in this project. This development will result in the ability to remove heat more efficiently and effectively by using vortex generators (VGs), especially for the electronics in human spacecraft. When better liquid cooling in cold plates is achieved, it can lead to significant energy savings as well as the reduction of the equipment size and weight. Eventually, this research can support the design, development, and implementation of the next generation of thermal management systems for the electronics in spacecraft applications. Cold plates have liquid coolant flow passages bounded by metallic walls. The use of vortex generators (VGs) in the flow passages has a great potential to enhance heat transfer while minimizing the weight and pressure drop penalties. Therefore, the objective of this research is to show that the multiscale vortex structures induced by microscale VGs can transfer and transport thermal energy more efficiently and effectively in cold plates. Specifically, this research project will include 1) development of an advanced cold plate heat exchanger using multiple micro-VGs, 2) investigation of the effects of the vortical structures induced by micro-VGs on convective heat transfer, and 3) optimization of the liquid coolant flow passages with specific emphasis on cold plates in human spacecraft. It is expected that the vortical flows induced by micro-VGs will disrupt the hydraulic/thermal boundary layers and will promote the flow instabilities and the formation of secondary coherent structures that govern meso- and micro-mixing mechanisms. For thermal analysis, fluid temperature, thermal efficiency, Nusselt number, and convection heat transfer coefficient will be evaluated experimentally. The local surface temperature distributions of the cold plate will also be measured using infrared (IR) thermography. Furthermore, the coolant flow passage configurations will be modified based on the experimental results to achieve the uniform temperature distributions reducing the locally concentrated heat spots. Eventually, success of this research project will lead to the thermal performance enhancement of cold plates, thereby reducing of the equipment size/weight and saving energy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
技术的快速发展导致电子产品的性能更高、尺寸更小。随着电路密度的提高和更快的工作频率,电子器件会散发更多的热量。由于散热量的显着增加,采用散热器和风扇的传统散热系统通常不足以让现代电子产品保持在工作温度范围内。因此,这项研究的动力是开发一种先进的热管理系统,以充分消除散发的热量并将电子设备保持在工作温度以下,以获得更好的性能和高可靠性。通过与美国宇航局约翰逊航天中心的合作,该项目将设计和开发先进的冷板热交换器。这一发展将导致能够通过使用涡流发生器(VG)更有效地去除热量,特别是对于载人航天器中的电子设备。当冷板中实现更好的液体冷却时,可以显着节省能源并减少设备尺寸和重量。最终,这项研究可以支持航天器应用中电子设备的下一代热管理系统的设计、开发和实施。冷板具有由金属壁界定的液体冷却剂流动通道。在流道中使用涡流发生器(VG)具有增强传热的巨大潜力,同时最大限度地减少重量和压降损失。因此,本研究的目的是证明微尺度VG引起的多尺度涡流结构可以在冷板中更有效地传递和传输热能。具体来说,该研究项目将包括 1) 使用多个微型 VG 开发先进的冷板换热器,2) 研究微型 VG 引起的涡流结构对对流传热的影响,以及 3) 液体的优化冷却剂流动通道,特别强调载人航天器中的冷板。预计微 VG 引起的涡流将破坏水力/热边界层,并促进流动不稳定性和控制细观和微观混合机制的次级相干结构的形成。对于热分析,将通过实验评估流体温度、热效率、努塞尔数和对流换热系数。冷板的局部表面温度分布也将使用红外 (IR) 热成像技术进行测量。此外,将根据实验结果修改冷却剂流道配置,以实现均匀的温度分布,减少局部集中的热点。最终,该研究项目的成功将导致冷板热性能的增强,从而减少设备的尺寸/重量并节省能源。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值进行评估,认为值得支持以及更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeongmoon Park其他文献

Jeongmoon Park的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于4d或5d氧化物/庞磁阻全氧化物异质结的自旋轨道矩及电场调控研究
  • 批准号:
    12304149
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
界面工程调控钙钛矿钌氧化物4d电子自旋/轨道态
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
钙钛矿Sr2IrO4中强自旋轨道耦合新物理与新效应
  • 批准号:
    12174128
  • 批准年份:
    2021
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
4d、5d关联电子体系中复自旋—轨道序和自旋—轨道激发的理论研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    62 万元
  • 项目类别:
    面上项目
基于实验室、就位及轨道数据的嫦娥3号和4号着陆区光度学研究
  • 批准号:
    42002306
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了