AMPS: Compositional Data-Driven Modeling, Prediction and Control for Reconfigurable Renewable Energy Systems
AMPS:可重构可再生能源系统的组合数据驱动建模、预测和控制
基本信息
- 批准号:2229435
- 负责人:
- 金额:$ 42.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The modern power grid is rapidly evolving towards a distributed and reconfigurable system dominated by renewable energy resources, represented by distributed generation, plug-in electric vehicles, energy storage, and demand-response resources. The goal of this project is to develop computational tools to address new challenges arising in modeling and control of the distributed and reconfigurable power systems subject to heterogeneous disturbances. This objective will be addressed by the development of new mathematical algorithms and theory that will be deployed in power system applications, leveraging the fundamental knowledge from machine learning, dynamical systems, and control theory. This project will contribute to the NSF mission of advancing STEM through the training of two graduate students and curricular development through the design of courses on the topics of cyber-physical microgrids and machine learning for dynamical systems. This project aims to devise compositional data-driven modeling, prediction, and control methods to ensure the transient stability of the distributed and reconfigurable renewable-energy-dominant power systems, which are inherently nonlinear, high dimensional, partially observed, and subject to heterogeneous uncertainties. This project will illuminate the machine learning advances for developing scalable and cohesive approaches to solve the fundamental challenge of in system’s operation. Specifically, the principal investigators (PIs) will (1) develop a noise-resilient compositional bilinear operator theoretic method to identify a control-amenable model for the transient dynamics of reconfigurable renewable energy systems; (2) devise a stochastic dynamics model for the partially-observed system by integrating a rigorous statistical closure formulation and a physics-informed topology-aware data-driven model; and (3) integrate the developed models with the optimal control algorithms to improve the transient stability of the distributed and reconfigurable system in a predictive manner towards a real-time autonomous operation capability. The PIs anticipate that these outcomes will substantially enrich and expand the current research on dynamic modeling and control of large-scale interconnected systems and support the development of these techniques for applications of the next-generation distribution grids.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代电网迅速发展朝着分布式和重新配置的系统以可再生能源为主导的系统,该系统由分布式生成,插入电动汽车,储能和需求响应资源代表。该项目的目的是开发计算工具,以解决在遇到异质灾害的分布式和可重构功率系统建模和控制方面产生的新挑战。这一目标将通过开发新的数学算法和理论来解决,这些算法和理论将部署在电力系统应用中,从而利用机器学习,动态系统和控制理论的基本知识。该项目将有助于NSF的使命,即通过培训两名研究生和当前的发展,通过设计有关动态系统的网络物理微电网和机器学习主题的课程。该项目旨在设计复合数据驱动的建模,预测和控制方法,以确保分布式和可重新配置的可再生能源占主导地位的功率系统的过渡稳定性,这些功率系统本质上是非线性的,高维,部分观察到的,并受到异构不认真的不认真。该项目将阐明机器学习的进步,以开发可扩展和凝聚力的方法来解决系统操作中的基本挑战。具体而言,主要研究者(PIS)将(1)开发一种噪声复合双线性操作员理论方法,以识别可控制的可重新配置可再生能源系统瞬态动力学的控制模型; (2)通过整合严格的统计闭合公式和物理意识到的数据驱动的数据驱动的模型来为部分观察到的系统设计一个随机动力学模型; (3)将开发的模型与最佳控制算法集成在一起,以预测的方式提高分布式和可重新配置系统的瞬态稳定性,以实现实时自主操作能力。 PI预计,这些结果将第二次丰富和扩展有关大规模互连系统的动态建模和控制的当前研究,并支持这些技术的开发,以用于下一代分销网格的应用。该奖项反映了NSF的法规任务,并认为通过基金会的知识优点和广泛的cribia crietia criperia criperia crigitia criperia the Insportauction the Pocies take criped supportion。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A data-driven statistical-stochastic surrogate modeling strategy for complex nonlinear non-stationary dynamics
复杂非线性非平稳动力学的数据驱动统计随机代理建模策略
- DOI:10.1016/j.jcp.2023.112085
- 发表时间:2023
- 期刊:
- 影响因子:4.1
- 作者:Qi, Di;Harlim, John
- 通讯作者:Harlim, John
Data-Driven Modeling of Microgrid Transient Dynamics Through Modularized Sparse Identification
- DOI:10.1109/tste.2023.3273127
- 发表时间:2024-01-01
- 期刊:
- 影响因子:8.8
- 作者:Nandakumar,Apoorva;Li,Yan;Chen,Bo
- 通讯作者:Chen,Bo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yan Li其他文献
Apolipoprotein E O-glycosylation is associated with amyloid plaques and APOE genotype
载脂蛋白 E O-糖基化与淀粉样蛋白斑和 APOE 基因型相关
- DOI:
10.1101/2023.01.03.522616 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Paige E Lawler;James G. Bollinger;S. Schindler;Cynthia Hodge;Nicolas J Iglesias;Vishal Krishnan;Johnathan Coulton;Yan Li;D. Holtzman;R. Bateman - 通讯作者:
R. Bateman
De novo design TNF-α antagonistic peptide based on the complex structure of TNF-α with its neutralizing monoclonal antibody Z12
基于TNF-α的复杂结构与其中和单克隆抗体Z12从头设计TNF-α拮抗肽
- DOI:
10.1016/j.jbiotec.2006.01.036 - 发表时间:
2006 - 期刊:
- 影响因子:4.1
- 作者:
Wei;Jiannan Feng;Yan Li;Zhou Lin;B. Shen - 通讯作者:
B. Shen
What's wrong with the public participation of urban regeneration project in China: a study from multiple stakeholders' perspectives
中国城市更新项目公众参与的误区:多利益相关者视角的研究
- DOI:
10.1108/ecam-03-2020-0175 - 发表时间:
2021-02 - 期刊:
- 影响因子:4.1
- 作者:
Bingsheng Liu;Xin Lu;Xuan Hu;Ling Li;Yan Li - 通讯作者:
Yan Li
Event-triggered synchronization for second-order nodes in complex dynamical network with time-varying coupling matrices
时变耦合矩阵复杂动态网络二阶节点的事件触发同步
- DOI:
10.1007/s11071-019-05320-y - 发表时间:
2019-11 - 期刊:
- 影响因子:5.6
- 作者:
Yan Li;Chen Weisheng;Fang Xinpeng;Dai Hao - 通讯作者:
Dai Hao
Effect of bivariate data's correlation on sequential tests of circular error probability
双变量数据相关性对循环误差概率序贯检验的影响
- DOI:
10.1016/j.jspi.2015.11.001 - 发表时间:
2016-04 - 期刊:
- 影响因子:0.9
- 作者:
Yan Li;Yajun Mei - 通讯作者:
Yajun Mei
Yan Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yan Li', 18)}}的其他基金
Human Stem Cell Fate Decisions Dictated by Decoupled Biophysical Cues
人类干细胞的命运决定由解耦的生物物理线索决定
- 批准号:
1917618 - 财政年份:2020
- 资助金额:
$ 42.92万 - 项目类别:
Standard Grant
Collaborative Research: Maintaining Energy Homeostasis to Preserve Biological Properties during Culture Expansion of Human Mesenchymal Stem Cells
合作研究:在人间充质干细胞培养扩增过程中维持能量稳态以保留生物特性
- 批准号:
1743426 - 财政年份:2017
- 资助金额:
$ 42.92万 - 项目类别:
Standard Grant
CAREER:Engineering Brain-region-specific Organoids Derived from Human Stem Cells
职业:工程化源自人类干细胞的大脑区域特异性类器官
- 批准号:
1652992 - 财政年份:2017
- 资助金额:
$ 42.92万 - 项目类别:
Standard Grant
Conference on Frontiers of Hierarchical Modeling in Observational Studies, Complex Surveys and Big Data, May 29-31, 2014
观察研究、复杂调查和大数据层次建模前沿会议,2014 年 5 月 29-31 日
- 批准号:
1361869 - 财政年份:2014
- 资助金额:
$ 42.92万 - 项目类别:
Standard Grant
BRIGE: Engineering a BioMatrix Library Derived from Induced Pluripotent Stem Cells
BRIGE:工程化源自诱导多能干细胞的 BioMatrix 文库
- 批准号:
1342192 - 财政年份:2013
- 资助金额:
$ 42.92万 - 项目类别:
Standard Grant
SBIR Phase I: Micro/Nanofluidic Protein Profiler for Pathogen Detection
SBIR 第一阶段:用于病原体检测的微/纳流体蛋白质分析仪
- 批准号:
0441585 - 财政年份:2005
- 资助金额:
$ 42.92万 - 项目类别:
Standard Grant
相似国自然基金
大型野生动物对秦岭山地森林林下植物物种组成和多样性的影响及作用机制
- 批准号:32371605
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
根系周转及其分泌物组成主导酸化森林土壤碳积累的机理
- 批准号:32301564
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
地质脂类记录的阿巴拉契盆地晚泥盆世海洋微生物组成对生态危机事件的响应
- 批准号:42302348
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于植硅石独特矿物组成构建纳米粒子破乳剂及其对原油乳液的破乳行为
- 批准号:52364027
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
洋中脊玄武岩和近洋脊海山玄武岩的锌同位素组成与地幔不均一性研究
- 批准号:42376051
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Bayesian Sparse Dirichlet-Multinomial Models for Discovering Latent Structure in High-Dimensional Compositional Count Data
用于发现高维组合计数数据中潜在结构的贝叶斯稀疏狄利克雷多项模型
- 批准号:
2245492 - 财政年份:2023
- 资助金额:
$ 42.92万 - 项目类别:
Continuing Grant
Proportionality based association metrics applied to count compositional data
基于比例的关联度量应用于计算成分数据
- 批准号:
573217-2022 - 财政年份:2022
- 资助金额:
$ 42.92万 - 项目类别:
University Undergraduate Student Research Awards
Elucidating the compositional, structural and mechanical effects of Dentinogenesis Imperfecta on the Dentin-Enamel Junction
阐明牙本质发育不全对牙本质-牙釉质连接处的成分、结构和机械影响
- 批准号:
10370654 - 财政年份:2022
- 资助金额:
$ 42.92万 - 项目类别:
Elucidating the compositional, structural and mechanical effects of Dentinogenesis Imperfecta on the Dentin-Enamel Junction
阐明牙本质发育不全对牙本质-牙釉质连接处的成分、结构和机械影响
- 批准号:
10590742 - 财政年份:2022
- 资助金额:
$ 42.92万 - 项目类别:
CAREER: Modeling Situated Intention during Nondeterministic Pedestrian-Vehicle Interactions through Explainable Compositional Learning of Naturalistic Driving Data
职业:通过自然驾驶数据的可解释组合学习,对非确定性行人-车辆交互过程中的情境意图进行建模
- 批准号:
2145565 - 财政年份:2022
- 资助金额:
$ 42.92万 - 项目类别:
Continuing Grant