Collaborative Research: AMPS: Robust Failure Probability Minimization for Grid Operational Planning with Non-Gaussian Uncertainties
合作研究:AMPS:具有非高斯不确定性的电网运行规划的鲁棒故障概率最小化
基本信息
- 批准号:2229410
- 负责人:
- 金额:$ 28.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The electric power industry accounted for the second-largest portion of all carbon emissions across economic sectors in 2020. Renewable energy resources, particularly wind and solar, are critical to decarbonizing the grid and ensuring the nation's future prosperity and welfare. However, because of their inherent and unavoidable intermittency and variability, successful integration of renewable energy resources in the nation's energy mix poses fundamental challenges for day-to-day grid operations. Failure to account for this uncertainty during planning can result in loss of service and grid de-stabilization, thus jeopardizing not only the achievement of decarbonization targets but also system reliability. This project develops the next generation of mathematical methods, computer models, and algorithms for grid operational planning, which accurately and systematically take into account the non-normal and multi-modal nature of renewable uncertainty, as well as the nonlinear and often counter-intuitive physical laws that govern electric power networks. The project's methods and computer implementations shall benefit and inform diverse planning tools, both within the electric power sector as well as the broader energy sector, including those of private companies and vendors who specialize in power systems software. The project further impacts education and the broader society by training undergraduate and graduate STEM students in energy systems optimization and the foundations of electric power grid operations, thereby enabling them to apply their analytical skills to design more environmentally- and economically-efficient future energy systems.The project contributes a general methodology, including new mathematical models, theory, and algorithms, to systematically account for non-Gaussian error distributions of renewable energy forecasts, in one of the most fundamental power system planning problems called AC Optimal Power Flow. A general treatment of non-Gaussian errors in electric load and renewable energy forecasts has not been considered before in grid planning, despite being exhibited in data. The project rigorously integrates risk and uncertainty in this context by developing a novel methodology for optimization under non-Gaussian probabilistic constraints. This is achieved by exploiting the representability and analyticity of Gaussian mixture models and by designing algorithms that are modular enough to allow current methods which are proven to work well for Gaussian errors to be reusable with only minor modifications. The generality of the approach is expected to spur new algorithms in the broader field of chance-constrained optimization, including nonlinear nonconvex problems whose constraints are affected by Gaussian mixture uncertainties. The project also rigorously accounts for misspecification of the mixture model parameters by designing novel non-Gaussian ambiguity sets, which have not been studied before but have the potential to enable the discovery of robust network operating points with improved out-of-sample performance and reliability. The project uses real utility data to guide model validation and experimentation and also provides a set of practical recommendations for system operators to facilitate the adoption of the developed methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
2020年,电力行业占所有经济部门碳排放量的第二大部分。可再生能源,特别是风能和太阳能,对于电网脱碳和确保国家未来的繁荣和福利至关重要。然而,由于其固有的、不可避免的间歇性和可变性,可再生能源在国家能源结构中的成功整合给日常电网运营带来了根本性挑战。如果在规划过程中未能考虑到这种不确定性,可能会导致服务中断和电网不稳定,从而不仅危及脱碳目标的实现,而且还会危及系统的可靠性。该项目开发下一代电网运行规划的数学方法、计算机模型和算法,准确、系统地考虑可再生能源不确定性的非正态和多模态性质,以及非线性且常常违反直觉的性质。控制电力网络的物理定律。该项目的方法和计算机实施将有利于电力部门以及更广泛的能源部门的各种规划工具,并为其提供信息,包括那些专门从事电力系统软件的私营公司和供应商。该项目通过在能源系统优化和电网运营基础方面培训本科生和研究生 STEM 学生,从而使他们能够运用分析技能来设计更加环保和经济高效的未来能源系统,从而进一步影响教育和更广泛的社会。该项目提供了一种通用方法,包括新的数学模型、理论和算法,以系统地解释可再生能源预测的非高斯误差分布,这是最基本的电力系统规划问题之一,称为交流最优潮流。尽管在数据中有所体现,但之前在电网规划中并未考虑对电力负荷和可再生能源预测中非高斯误差的一般处理。该项目通过开发一种在非高斯概率约束下进行优化的新颖方法,严格整合了这种背景下的风险和不确定性。这是通过利用高斯混合模型的可表示性和分析性以及通过设计足够模块化的算法来实现的,该算法允许被证明对高斯误差有效的当前方法只需进行较小的修改即可重复使用。该方法的通用性预计将在更广泛的机会约束优化领域激发新算法,包括其约束受高斯混合不确定性影响的非线性非凸问题。该项目还通过设计新颖的非高斯模糊度集来严格解释混合模型参数的错误指定,这些模糊度集以前没有被研究过,但有潜力能够发现鲁棒的网络操作点,并提高样本外性能和可靠性。该项目使用真实的公用事业数据来指导模型验证和实验,并为系统运营商提供了一系列实用建议,以促进所开发方法的采用。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,认为值得支持。智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanjay Mehrotra其他文献
Stochastic Robust Mathematical Programming Model for Power System Optimization
电力系统优化的随机鲁棒数学规划模型
- DOI:
10.1109/tpwrs.2015.2394320 - 发表时间:
2016 - 期刊:
- 影响因子:6.6
- 作者:
Cong Liu;Changhyeok Lee;Haoyong Chen;Sanjay Mehrotra - 通讯作者:
Sanjay Mehrotra
Computational experience with a modified potential reduction algorithm for linear programming
线性规划改进的势能约简算法的计算经验
- DOI:
10.1080/10556788.2011.634911 - 发表时间:
2012 - 期刊:
- 影响因子:2.2
- 作者:
Sanjay Mehrotra;Kuo - 通讯作者:
Kuo
Solution of Monotone Complementarity and General Convex Programming Problems Using a Modified Potential Reduction Interior Point Method
使用改进的势约简内点法求解单调互补和一般凸规划问题
- DOI:
10.1287/ijoc.2016.0715 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Kuo;Sanjay Mehrotra - 通讯作者:
Sanjay Mehrotra
Asymptotic convergence in a generalized predictor-corrector method
- DOI:
10.1007/bf02592143 - 发表时间:
1996-07 - 期刊:
- 影响因子:2.7
- 作者:
Sanjay Mehrotra - 通讯作者:
Sanjay Mehrotra
A design of experiments approach to validation sampling for logistic regression modeling with error-prone medical records
一种用于验证抽样的实验设计方法,用于容易出错的医疗记录的逻辑回归建模
- DOI:
10.1093/jamia/ocv132 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Liwen Ouyang;D. Apley;Sanjay Mehrotra - 通讯作者:
Sanjay Mehrotra
Sanjay Mehrotra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanjay Mehrotra', 18)}}的其他基金
Equitable and Efficient Resource Allocation using Stochastic Fractional Optimization
使用随机分数优化实现公平且高效的资源分配
- 批准号:
1763035 - 财政年份:2018
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
RAPID: Addressing Geographic Disparities in the National Organ Transplant Network
RAPID:解决国家器官移植网络中的地理差异
- 批准号:
1743886 - 财政年份:2017
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
I-Corps: Clinical Workforce Schedule Optimization Technology
I-Corps:临床劳动力调度优化技术
- 批准号:
1764312 - 财政年份:2017
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
Collaborative Research: Analysis and Solution Methods for Function Robust Optimization Models
协作研究:函数鲁棒优化模型的分析与求解方法
- 批准号:
1361942 - 财政年份:2014
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
Managing Downstream Patient Flow Processes Using Improved Coordination and Staffing
使用改进的协调和人员配置来管理下游患者流动流程
- 批准号:
1335585 - 财政年份:2013
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
Models and Algorithms for Risk Adjusted Optimization with Robust Utilities
具有稳健实用程序的风险调整优化模型和算法
- 批准号:
1131386 - 财政年份:2011
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
Addressing Geographical Disparities in Transplant Organ Accessibility Across United States
解决美国各地移植器官可及性的地理差异
- 批准号:
1131568 - 财政年份:2011
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
Distribution and Moment-Robust Optimization Models and Algorithms
分布和矩鲁棒优化模型和算法
- 批准号:
1100868 - 财政年份:2011
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
Multi-objective Robust Stochastic Planning and Scheduling of Healthcare Service Providers
医疗服务提供者的多目标鲁棒随机规划和调度
- 批准号:
0928936 - 财政年份:2009
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
Methods for Solving Mixed Integer Programs Using Adjoint Lattices
使用伴随格求解混合整数规划的方法
- 批准号:
0522765 - 财政年份:2005
- 资助金额:
$ 28.4万 - 项目类别:
Continuing Grant
相似国自然基金
微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
- 批准号:82302368
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于太赫兹行波管放大器的高效率多路功率合成技术的研究
- 批准号:62371102
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
紧凑型大功率微波速调管放大器研究
- 批准号:62371108
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于SISL的三维集成封装宽带高效率功率放大器研究
- 批准号:62301387
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有多电流合成结点的新型功率放大器架构及智能设计技术研究
- 批准号:62371077
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
- 批准号:
2229011 - 财政年份:2023
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Deep-Learning-Enabled Distributed Optimization Algorithms for Stochastic Security Constrained Unit Commitment
合作研究:AMPS:用于随机安全约束单元承诺的深度学习分布式优化算法
- 批准号:
2229345 - 财政年份:2023
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Rare Events in Power Systems: Novel Mathematics, Statistics and Algorithms.
合作研究:AMPS:电力系统中的罕见事件:新颖的数学、统计和算法。
- 批准号:
2229012 - 财政年份:2023
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
- 批准号:
2229074 - 财政年份:2023
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant
Collaborative Research: AMPS: Rethinking State Estimation for Power Distribution Systems in the Quantum Era
合作研究:AMPS:重新思考量子时代配电系统的状态估计
- 批准号:
2229073 - 财政年份:2023
- 资助金额:
$ 28.4万 - 项目类别:
Standard Grant