RII Track-4:NSF: Rational Design and Engineering of Composite Electrolytes for All-solid-state Li-S Batteries

RII Track-4:NSF:全固态锂硫电池复合电解质的合理设计与工程

基本信息

  • 批准号:
    2229305
  • 负责人:
  • 金额:
    $ 20.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

High-energy and cost-effective electrical energy storage technologies are in great demand in sectors ranging from portable devices to transportation. Rechargeable lithium-sulfur (Li-S) batteries offers great promise for reversibly storing large amounts of electrical energy at moderate cost. However, Li-S batteries belie multiple challenges stemming from the complicated solution phase reaction of sulfur and poor transport of electrons and ions across the interfaces of the battery, resulting in a low capacity and poor cycle life. The main objective of this project is to develop composite solid electrolytes to realize all-solid-state Li-S batteries with high capacity and long lifetime. The project will study the science that governs the stability of electrode-electrolyte interfaces in all-solid-state Li-S batteries. By patterning with researchers from Idaho National Laboratory (INL), the PI will develop the capability to study ion transport across multiple interfaces in the solid-state Li-S battery in a more realistic pouch cell configuration by using the state-of-art operando spectroscopies. It is expected that the collaboration resulting from this fellowship will foster engagement of students at the University of New Mexico (UNM) with those at INL and expand and strength the research capability in electrochemical energy storage and conversion in the jurisdiction.This Research Infrastructure Improvement Track-4 EPSCoR Research Fellows (RII Track-4) project would provide a fellowship to an Assistant Professor and training for a graduate student at the University of New Mexico (UNM). Li-S batteries provide an attractive high theoretical energy density that is ten times higher than that of Li-ion batteries. However, polysulfide dissolution and resulting shuttling reaction of sulfur species in liquid electrolytes hinder the practical application of this cell chemistry. Solid-state electrolytes are needed to control the sluggish reactions in Li-S batteries, but they tend to create high interfacial resistance at the electrode-electrolyte interfaces, limiting the capacity and cycle life of the batteries. This project will systematically investigate the interfacial stability of both cathode and anode electrolyte interfaces in all-solid-state Li-S batteries with the composite electrolytes. Composite electrolyte based on ceramics fillers and ion-conducting polymers will be fabricated with tunable stiffness and elasticity in order to stabilize the interfaces and reduce the interfacial resistance in the Li-S battery. Advanced material and electrochemical characterizations will be employed to study composition-structural-property relationships of the interfaces of the composite electrolyte before and after battery cycling. The project will provide fundamental knowledge of ion-conduction mechanism across different solid-solid interfaces, electrochemical reaction and mechanical properties at electrode-electrolyte interfaces in both all-solid-state Li-S coin cells and pouch cells. The obtained knowledge will provide guidance on interface design to reduce interfacial resistance and realize high performance all-solid-state Li-S batteries. This fellowship will strengthen the PI’s research profile, by expanding pouch cell fabrication and advanced in-situ characterization facilities at UNM and continuing to collaborate with INL via student internship and joint journal publications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
然而,从便携式设备到交通运输等领域,对高能量且具有成本效益的电能存储技术的需求量很大。锂硫电池认为,硫的复杂溶液相反应以及电子和离子在电池界面上的传输不良导致了电池容量低和循环寿命差的多重挑战,该项目的主要目标是开发。合成的该项目将通过与研究人员合作,研究控制全固态锂硫电池中电极-电解质界面稳定性的科学。来自爱达荷国家实验室 (INL) 的 PI 将开发通过使用最先进的操作光谱学以更现实的软包电池配置研究固态锂硫电池中多个界面的离子传输的能力。预计该奖学金产生的合作将促进新墨西哥大学 (UNM) 学生与 INL 学生的接触,并扩大和加强辖区电化学能源存储和转换方面的研究能力。该研究基础设施改进轨道 - 4 EPSCoR 研究人员 (RII Track-4) 项目将为新墨西哥大学 (UNM) 的助理教授提供奖学金,并为研究生提供培训,提供有吸引力的高理论能量密度,可达十倍。高于锂离子电池。然而,多硫化物的溶解以及由此产生的硫物质在液体电解质中的穿梭反应阻碍了这种电池化学的实际应用,需要固态电解质来控制锂硫电池中的缓慢反应,但它们往往会在电池中产生高界面电阻。电极-电解质界面,限制了电池的容量和循环寿命,该项目将不可避免地研究全固态阴极和阳极电解质界面的界面稳定性。采用基于陶瓷填料和离子导电聚合物的复合电解质的锂硫电池将具有可调节的刚度和弹性,以稳定锂硫电池的界面并降低界面电阻。该项目将利用表征来研究电池循环前后复合电解质界面的成分-结构-性能关系。跨不同固-固界面、全固态锂硫纽扣电池和软包电池中电极-电解质界面的电化学反应和机械性能,所获得的知识将为界面设计提供指导,以降低界面电阻并实现高性能。该奖学金将通过扩大新墨西哥大学的软包电池制造和先进的原位表征设施,并通过学生实习和联合期刊出版物继续与 INL 合作,加强 PI 的研究概况。通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shuya Wei其他文献

Polyvinylamine Gel as a Cleaning Agent for Removing Mineral Crusts from Archaeologically Important Stone Artifacts
聚乙烯胺凝胶作为清洁剂,用于去除具有重要考古价值的石制品中的矿物结壳
  • DOI:
    10.1080/00393630.2021.1935119
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Huarui Han;Jianrui Zha;Feng Wang;Linlin Zhou;Ankun Wang;Shuya Wei
  • 通讯作者:
    Shuya Wei

Shuya Wei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

融合多源生物信息-连续知识追踪解码-无关意图拒识机制的康复外骨骼人体运动意图识别研究
  • 批准号:
    62373344
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于三维显微图像序列的细胞追踪与迁移行为分析方法
  • 批准号:
    62301296
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用精准谱系追踪揭示关节囊纤维化导致颞下颌关节强直的分子机制研究
  • 批准号:
    82301010
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医养结合机构服务模式对老年人健康绩效的影响、机制与引导政策:基于准自然实验的追踪研究
  • 批准号:
    72374125
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
基于量子电压动态追踪补偿的精密磁通测量方法研究
  • 批准号:
    52307021
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
  • 批准号:
    2327025
  • 财政年份:
    2024
  • 资助金额:
    $ 20.24万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
  • 批准号:
    2327206
  • 财政年份:
    2024
  • 资助金额:
    $ 20.24万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
  • 批准号:
    2327232
  • 财政年份:
    2024
  • 资助金额:
    $ 20.24万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 20.24万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 20.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了