RII Track-4: NSF: Development, Characterization and Performance Evaluation of Surface Engineered Additively Manufactured Parts for Nuclear Reactors

RII Track-4:NSF:核反应堆表面工程增材制造零件的开发、表征和性能评估

基本信息

  • 批准号:
    2229076
  • 负责人:
  • 金额:
    $ 24.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Metal additive manufacturing (AM) has developed significantly since its invention. In this project, a laser-based directed energy deposition (DED) process will be utilized to fabricate metallic parts for nuclear reactor application. The top few layers will be further engineered using an ultrasonic impact peening treatment to enhance its wear resistance. Post printing, the samples will be analyzed using neutron diffraction to reveal the evolution of microstructure, residual stress, and phase fractions at different build height regions along the build direction of fabricated samples to correlate the microstructural details with process conditions. Friction and wear behavior of these additively manufactured samples will be conducted via both reciprocating sliding and fretting wear testing. Tribology is the science of friction, wear, and lubrication, making it inherently inseparable from surface engineering. AM offers unique capabilities that can be leveraged to enhance the reliability of various tribological contacts. This project will explore the symbiotic relationship between AM, surface engineering, and tribology with respect to sliding and fretting contact problems specifically connected to nuclear reactors. However, the major findings from this research will provide valuable insights to wide varieties of contacts in critical applications, such as biomedical, automotive, and aerospace sectors.This Research Infrastructure Improvement Track-4 EPSCoR Research Fellows (RII Track-4) project would provide a fellowship to an Assistant professor and training for a graduate student at the University of North Dakota (UND). Tribology, a complex and highly interdisciplinary field, is the science of friction, wear, and lubrication. It is necessary to understand the differences in an AM part’s friction and wear mechanism compared to traditionally fabricated parts and in-depth material characterizations for proper commercialization. Surface engineering is connected to materials science since it pertains to the surface of solid matter. Additive manufacturing, surface engineering, and tribology have an interdependent relationship. Our research goal is to leverage this perspective to develop next-generation nuclear reactor components with enhanced reliability and customizability when encountering friction and wear at different temperatures. We will fabricate functionally graded metallic components made of Nitronic 60 stainless steel by leveraging customized laser-based directed energy deposition (DED) technique equipped with an ultrasonic impact peening (UIP) capability. Nitronic 60 is an inexpensive austenitic stainless steel widely used in the nuclear sector due to its galling-resistance properties. This material can present high-temperature wear and corrosion resistance, and widely used in valve seats, bushings, roller bearings, and rings. We believe that optimized process parameters during UIP treatment can result in a strain-induced FCC to HCP martensitic phase transformation (SIM) in the deposited near-surface layers of Nitronic 60, and enhanced materials states, such as residual stress with refined grains, can result in improved tribological behavior. Process-microstructure-property of deposited Nitronic 60 will be revealed by understanding phase fractions, residual stress evolution along build height through neutron diffraction and correlated that with reciprocating friction and wear testing as well as grid-to-rod fretting characteristics of fabricated samples.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自发明以来,金属添加剂制造(AM)已经显着发展。在这个项目中,将利用基于激光的定向能量沉积(DED)工艺来制造金属零件以供核反应堆应用。前几层将通过超声撞击果处理处理进一步设计,以增强其耐磨性。后打印后,将使用中性衍射对样品进行分析,以揭示微观结构,残余应力和相位分数在不同建筑高度区域沿着制造样品的构建方向的演变,以将微结构细节与过程条件相关联。这些另外制造样品的摩擦和磨损行为将通过往复式滑动和刷子磨损测试进行。 Tribology是摩擦,磨损和润滑的科学,使其与表面工程固有地分离。 AM提供的独特功能可以利用,以提高各种摩擦学联系的可靠性。该项目将探讨AM,表面工程和摩擦学之间的共生关系,方面与核反应堆有关的滑动和烦恼的接触问题。但是,这项研究的主要发现将为关键应用(例如生物医学,汽车和航空航天部门)的广泛联系提供宝贵的见解。这项研究基础设施改进Track-4 EPSCOR Research Fullows(RII Track-4)项目将为助理教授和培训培训,并为诺斯大学的毕业生培训提供了一名助理教授和培训。摩擦学是一个复杂而高度的跨学科领域,是摩擦,磨损和润滑的科学。与传统上捏造的零件和深入的材料特征相比,有必要了解AM零件的摩擦和磨损机制的差异。表面工程与材料科学有关,因为它与固体物质的表面有关。增材制造,表面工程和摩擦学具有相互依存关系。我们的研究目标是利用这一观点来开发下一代核反应堆成分,在遇到摩擦和在不同温度下遇到摩擦和磨损时具有增强的可靠性和可定制性。我们将通过利用具有超声波撞击(UIP)功能的定制激光定向能量沉积(DED)技术来制造由硝酸60不锈钢制成的功能分级金属组件。氮60是一种廉价的奥氏体不锈钢,由于其抗抑郁特性,在核部门广泛使用。该材料可以具有高温磨损和耐腐蚀性,并广泛用于阀座,衬套,滚轮轴承和环。我们认为,在UIP处理过程中优化的过程参数会导致硝酸60的近表面层中的菌株诱导的FCC对HCP Martensisit阶段转化(SIM),以及增强的材料状态,例如带有精制谷物的残留应力,可以改善摩擦学行为。沉积硝酸60的过程微粒结构 - 将通过理解相位分数,通过中子衍射沿建筑物高度沿着建筑物沿建筑物沿着构建高度进化而揭示,并与之相关,与往复式摩擦和磨损测试以及网格对螺旋的测试以及对rod式的划分的特征相关,这些奖项通过评估NSF的智力范围来表现出智力的依据,这是NSF的范围的范围。 标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sougata Roy其他文献

Effect of laser treatment parameters on surface modification and tribological behavior of AISI 8620 steel
  • DOI:
    10.1016/j.triboint.2017.03.036
  • 发表时间:
    2017-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sougata Roy;Jingnan Zhao;Pranav Shrotriya;Sriram Sundararajan
  • 通讯作者:
    Sriram Sundararajan
Transcriptional Analysis of the Principal Cell Division Gene, ftsZ, of Mycobacterium tuberculosis
结核分枝杆菌主要细胞分裂基因 ftsZ 的转录分析
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Sougata Roy;P. Ajitkumar
  • 通讯作者:
    P. Ajitkumar
A Comparative Tribo-Mechanical Behavior Analysis of Laser Cladded Nitronic 60 Coating Against Wrought Nitronic 60 Alloy
  • DOI:
    10.1016/j.mfglet.2022.07.072
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sougata Roy;Niyanth Sridharan;Arup Gangopadhyay;Jun Qu
  • 通讯作者:
    Jun Qu
High-speed turning of AISI 4140 steel by multi-layered TiN top-coated insert with minimum quantity lubrication technology and assessment of near tool-tip temperature using infrared thermography
采用多层 TiN 顶部涂层刀片和微量润滑技术高速车削 AISI 4140 钢,并使用红外热成像技术评估刀尖附近的温度
type receptor signaling mediates the abnormality fragile X syndrome.
型受体信号介导异常脆性 X 综合征。
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Risa Kashima;Sougata Roy;M. Ascano;V. Martínez‐Cerdeño;Jeanelle Ariza;Sunghwan Kim;Justin Louie;Yao Lu;P. Leyton;Kenneth D. Bloch;Thomas B. Kornberg;P. Hagerman;R. Hagerman;G. Lagna;Akiko Hata
  • 通讯作者:
    Akiko Hata

Sougata Roy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sougata Roy', 18)}}的其他基金

RII Track-4: NSF: Development, Characterization and Performance Evaluation of Surface Engineered Additively Manufactured Parts for Nuclear Reactors
RII Track-4:NSF:核反应堆表面工程增材制造零件的开发、表征和性能评估
  • 批准号:
    2332471
  • 财政年份:
    2023
  • 资助金额:
    $ 24.84万
  • 项目类别:
    Standard Grant

相似国自然基金

石羊河上游径流水源追踪量化的模拟研究
  • 批准号:
    42301153
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向复杂场景的说话人追踪关键技术研究
  • 批准号:
    62306029
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单波段机载LiDAR测深的瞬时海面确定及光线追踪
  • 批准号:
    42304051
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
用户兴趣迁移现象下基于图神经网络的舆情追踪技术研究
  • 批准号:
    62302199
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于量子电压动态追踪补偿的精密磁通测量方法研究
  • 批准号:
    52307021
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
  • 批准号:
    2327025
  • 财政年份:
    2024
  • 资助金额:
    $ 24.84万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
  • 批准号:
    2327206
  • 财政年份:
    2024
  • 资助金额:
    $ 24.84万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
  • 批准号:
    2327232
  • 财政年份:
    2024
  • 资助金额:
    $ 24.84万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 24.84万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 24.84万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了