FMRG: Bio: CAS: Distributed methane conversion into value chemicals via synthetic microbial consortia
FMRG:生物:CAS:通过合成微生物群将分布式甲烷转化为有价值的化学品
基本信息
- 批准号:2229070
- 负责人:
- 金额:$ 317.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Methane is a potent greenhouse gas that is 25 times more damaging per molecule than carbon dioxide (CO2). Around the globe there are many methane sources of human and natural origin. Thus, there is a significant opportunity for technologies that capture and convert methane on-site into ‘higher-value’ chemicals. The goal of this project is to engineer new bioreactors that can efficiently convert methane into value chemicals. The project team will engineer enzymes inside microbes than can execute complex chemical reactions. The engineered microbes will be used to create structured biofilms inside of reactors to run chemical reactions at a large scale. These bioreactors will then be tested at relevant field sites, such as a wastewater treatment facility. The interdisciplinary team working on this project combines experts from synthetic biology, chemical engineering bioreactor design, social sciences, and potential future users to implement the new technology. The team will also study how this technology can be disseminated in a socially and environmentally responsible manner. This project includes a significant outreach component, with a particular focus on engaging underrepresented groups in STEM (science, technology, engineering and mathematics). The team will work with science teachers and their students to develop and disseminate novel educational activities that enable students to learn about microbiology.Emerging anaerobic, methane-oxidizing, microbiological systems hold promise for achieving on-site methane conversion more efficiently and more economically than existing chemical plants or aerobic bioreactors. The main project goal is to lay the foundation for modular, easily scalable, and distributable, anaerobic, and anaerobic/aerobic bioreactor systems that convert methane into higher-value chemicals utilizing synthetic microbial consortia. This project will have a significant impact on the future of biomanufacturing by: (1) capturing and converting methane into valuable chemicals in a more sustainable manner, (2) reducing greenhouse gas emissions, (3) developing novel, spatially-structured synthetic microbial consortia to execute these complex biosynthesis pathways, (4) designing bioreactors that holistically integrate all aspects from the basic sciences to the socio-economic benefits, and (5) developing biophysical models that enable rational reactor design and optimization. Moreover, the team takes an integrated and wholistic approach to systematically optimizing this technology at multiple levels, ranging from protein engineering to field-site integration. Collaboration with experts from bioreactor design to social scientists, and with potential future users (e.g., wastewater treatment plants, indigenous communities), will ensure project success and responsible dissemination of the results and technology. The team integrates education and interdisciplinary training of teachers, high-school and graduate students, and postdoctoral researchers at the interface of molecular biology, microbiology, and chemical engineering, and our teacher training will have multiplier effects. This project is jointly funded by the Division of Chemical, Bioengineering, Environmental, and Transport Systems and the Division of Civil, Mechanical, and Manufacturing Innovation in the Directorate for Engineering, the Division of Chemistry in the Directorate for Mathematical and Physical Sciences, the Office of Multidisciplinary Affairs in the Directorate of Social, Behavioral, and Economic Sciences, and the Robert Noyce Teacher Scholarship Program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
甲烷是一种潜在的温室气体,每个分子的破坏性是二氧化碳(CO2)的25倍。全球各地都有许多人类和自然来源的甲烷来源。这是一个很大的机会,可以将现场捕获和转化为“高价值”化学物质的技术。该项目的目的是设计可以有效地将甲烷转化为价值化学物质的新生物反应器。项目团队将在微生物内部设计酶,而不是执行复杂的化学反应。工程的微生物将用于在反应堆内部创建结构化的生物膜,以大规模运行化学反应。然后,这些生物反应器将在相关现场(例如废水处理设施)进行测试。从事该项目的跨学科团队结合了合成生物学,化学工程生物反应器设计,社会科学以及潜在的未来用户的专家,以实施新技术。团队还将研究如何以社会和环境负责的方式传播这项技术。该项目包括一个重要的外展部分,特别着眼于使代表性不足的STEM(科学,技术,工程和数学)参与。该团队将与科学老师及其学生合作开发和传播新颖的教育活动,使学生能够了解微生物学。出现厌氧,甲烷氧化,微生物系统具有比现有的化学植物或有氧生物生物的现有化学植物或更经济的现场甲烷转化的希望。主要的项目目标是为模块化,易于扩展,可分配,厌氧和厌氧/有氧生物反应器系统奠定基础,以利用合成微生物联盟转换为高价值化学物质。 This project will have a significant impact on the future of biomanufacturing by: (1) capturing and converting methane into valuable chemicals in a more sustainable manner, (2) reducing greenhouse gas emissions, (3) developing novel, spatially-structured synthetic microbial consortia to execute these complex biosynthesis pathways, (4) designing bioreactors that holistically integrated all aspects from the basic sciences to the社会经济益处,以及(5)开发可实现理性反应堆设计和优化的生物物理模型。此外,团队采取了一种集成而全面的方法来系统地在多个层面上优化该技术,从蛋白质工程到现场站点集成。与从生物反应器设计到社会科学家以及潜在的未来用户(例如废水处理厂,土著社区)的专家合作,将确保项目成功和负责结果的结果和技术。该团队在分子生物学,微生物学和化学工程学界面上对教师,高中和研究生以及博士后研究人员进行教育和跨学科培训,我们的教师培训将具有乘数效应。该项目由化学,生物工程,环境和运输系统的划分,以及工程局的民用,机械和制造创新司,数学和物理科学局的化学局,社会,行为和经济科学的多学科事务局以及Robert Science Noyce Noyce Noyce Noyce Noyce Noyce Noyce Noyce Noyce noys noyce noyce Noyce noyce noyce Noyce Noyce noyce noyce Noyce Noys.使用基金会的知识分子优点和更广泛的影响审查标准,通过评估被认为是宝贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hans Riedel-Kruse其他文献
Hans Riedel-Kruse的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hans Riedel-Kruse', 18)}}的其他基金
Collaborative Research: Foundations of programmable living materials through synthetic biofilm engineering and quantitative computational modeling
合作研究:通过合成生物膜工程和定量计算建模为可编程生物材料奠定基础
- 批准号:
2214020 - 财政年份:2023
- 资助金额:
$ 317.09万 - 项目类别:
Standard Grant
Visitor Interactions in Microbiology: A New Genre of Science Museum Exhibits
微生物学中的参观者互动:科学博物馆展览的新类型
- 批准号:
1612831 - 财政年份:2016
- 资助金额:
$ 317.09万 - 项目类别:
Standard Grant
DIP: Collaborative Research: Taking Hands-on Experimentation to the Cloud: Comparing Physical and Virtual Models in Biology on a Massive Scale
DIP:协作研究:在云端进行实践实验:大规模比较生物学中的物理模型和虚拟模型
- 批准号:
1324753 - 财政年份:2013
- 资助金额:
$ 317.09万 - 项目类别:
Standard Grant
相似国自然基金
基于磁性CRISPR/Cas13a-SERS生物传感的诺如病毒高敏即时检测及机理研究
- 批准号:32302218
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
III-E型CRISPR-Cas系统的结构生物学及其应用研究
- 批准号:32371276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
Cas14精准解码规律研究及其在转录因子高灵敏生物传感中的应用
- 批准号:22304083
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
“邻近-激活”的CRISPR-Cas12a向导RNA系统及其用于生物传感研究
- 批准号:22304007
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CRISPR-Cas精准识别协同NEAR指数信号放大一体化生物传感体系构建用于胰腺癌多重基因突变检测方法研究
- 批准号:32371521
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
22-BBSRC/NSF-BIO: Community-dependent CRISPR-cas evolution and robust community function
22-BBSRC/NSF-BIO:群落依赖性 CRISPR-cas 进化和强大的群落功能
- 批准号:
BB/Y008774/1 - 财政年份:2024
- 资助金额:
$ 317.09万 - 项目类别:
Research Grant
UKRI/BBSRC-NSF/BIO: Community-dependent CRISPR-cas evolution and robust community function
UKRI/BBSRC-NSF/BIO:群落依赖性 CRISPR-cas 进化和强大的群落功能
- 批准号:
2321502 - 财政年份:2023
- 资助金额:
$ 317.09万 - 项目类别:
Standard Grant
デジタル検出技術を基盤としたウイルスの新規感染診断法の開発
基于数字检测技术的新型病毒感染诊断方法的开发
- 批准号:
21H04645 - 财政年份:2021
- 资助金额:
$ 317.09万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
最強ウイルスバスター微生物による暗黒の底生生態系に潜むウイルス防御共生の実証
最强的病毒克星微生物展示了隐藏在黑暗底栖生态系统中的病毒保护共生关系
- 批准号:
21K18156 - 财政年份:2021
- 资助金额:
$ 317.09万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
CAS: Development of Bio-inspired Catalysts for Hydrolysis: Insights from Theoretical Studies
CAS:仿生水解催化剂的开发:理论研究的见解
- 批准号:
2102563 - 财政年份:2021
- 资助金额:
$ 317.09万 - 项目类别:
Standard Grant