Noncommutative Functions, Algebra and Operator Analysis

非交换函数、代数和算子分析

基本信息

  • 批准号:
    2155033
  • 负责人:
  • 金额:
    $ 11.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Noncommutativity is the idea that the order of operations matters; socks before shoes is very different than shoes before socks. Noncommutativity played a fundamental role in the foundation of quantum mechanics, leading to the development of the branch of mathematics known as functional analysis. From its origins in physics, functional analysis has gained a life of its own and has found exciting applications in areas such as quantum information theory and quantum computing as well as control and systems theory. More recently, questions (about semi-definite programming and linear matrix inequalities) arising in the engineering literature have led to the development of a new subfield of functional analysis known as noncommutative function theory. This exciting new subfield sits at the intersection of noncommutative algebra, functional analysis, and operator theory, and it enjoys a wide variety of applications. Rather than deal with completely abstract mathematical objects, noncommutative function theory employs the use of concrete structures known as matrices, which are one of the fundamental noncommutative objects used in science, engineering and industry. This project aims to deepen the understanding of noncommutative function theory and consequently augment its connections to related mathematical fields. It will assist in the professional development of early researches and provide an up-to-date list of both solved and unsolved problems in the field of noncommutative function theory.             One of the main goals of this project is to increase the interplay between noncommutative function theory, noncommutative algebra, and operator theory. Recently, theorems and advances have been made in noncommutative algebra through techniques in noncommutative function theory, complex analysis, and operator theory. Objects of interest will be noncommutative rational functions and how their evaluations on matrices and operators reveals algebraic information about the functions and the skew field they generate; there is a strong connection between the injectivity domains of noncommutative rational mappings, the invertibility sets of their Jacobian matrices, and whether the noncommutative rational mapping induces an automorphism of the free skew field. On the other hand, results from noncommutative algebra (such as the realization of a noncommutative rational function) will be used to deepen the understanding of topics in mathematical analysis. Employment of novel ideas from noncommutative algebra and noncommutative function theory will provide new insights into the study of optimal polynomial approximants and related areas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非交换性是指运算顺序很重要的思想;袜子先于鞋子与鞋子先于袜子非常不同,非交换性在量子力学的基础中发挥了重要作用,导致了被称为泛函分析起源的数学分支的发展。物理学中,泛函分析已经获得了自己的生命,并在量子信息论和量子计算以及控制和系统理论等领域找到了令人兴奋的应用。最近,出现了一些问题(关于半定规划和线性矩阵不等式)。在工程文献中有导致了泛函分析的一个新子领域的发展,即非交换函数理论,这个令人兴奋的新子领域位于非交换代数、泛函分析和算子理论的交叉点,并且它具有广泛的应用,而不是完全处理。作为抽象数学对象,非交换函数理论采用了称为矩阵的具体结构,矩阵是科学、工程和工业中使用的基本非交换对象之一。该项目旨在加深对非交换函数理论和矩阵的理解。因此,它将增强其与相关数学领域的联系,这将有助于早期研究的专业发展,并提供非交换函数理论领域已解决和未解决问题的最新列表。是为了增加非交换函数理论、非交换代数和算子理论之间的相互作用。最近,通过以下技术在非交换代数方面取得了定理和进展。非交换函数理论、复分析和算子理论。感兴趣的对象将是非交换有理函数,以及它们对矩阵和算子的评估如何揭示有关函数及其生成的偏斜场的代数信息;另一方面,非交换有理映射、其雅可比矩阵的可逆集,以及非交换有理映射是否会导致自由斜场的自同构。非交换代数(例如非交换有理函数的实现)将用于加深对数学分析主题的理解。非交换代数和非交换函数理论的新颖思想的运用将为最优多项式近似和相关的研究提供新的见解。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Meric Augat其他文献

Free Bianalytic Maps between Spectrahedra and Spectraballs in a Generic Setting
通用设置中 Spectrahedra 和 Spectraballs 之间的免费双解析图
Hyporational Functions and the Free Grothendieck Conjecture
假设函数和自由格洛腾迪克猜想
Bianalytic maps between free spectrahedra
自由谱面体之间的双解析图
  • DOI:
    10.1007/s00208-017-1630-3
  • 发表时间:
    2018-01-04
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Meric Augat;J. Helton;I. Klep;S. McCullough
  • 通讯作者:
    S. McCullough
Free potential functions
自由势函数
  • DOI:
    10.25537/dm.2022v27.1275-1297
  • 发表时间:
    2020-05-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Meric Augat
  • 通讯作者:
    Meric Augat
Compact Sets in the Free Topology
自由拓扑中的紧集
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Meric Augat;S. Balasubramanian;S. McCullough
  • 通讯作者:
    S. McCullough

Meric Augat的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
红毛藻多糖通过增加肠道鼠乳杆菌丰度双向调节免疫功能机制研究
  • 批准号:
    32302098
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高尿酸调控TXNIP驱动糖代谢重编程影响巨噬细胞功能
  • 批准号:
    82370895
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
人类神经干细胞发育过程中O-GlcNAc修饰的动态调控和功能分析
  • 批准号:
    32300805
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
精准穿透肿瘤干细胞对抗肿瘤转移的适配体功能载体的构建及作用机制研究
  • 批准号:
    22377101
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

The study of Whittaker functions for degenerate characters and their application to the global theory of automorphic forms
简并特征Whittaker函数的研究及其在自守形式全局理论中的应用
  • 批准号:
    23K03079
  • 财政年份:
    2023
  • 资助金额:
    $ 11.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Postdoctoral Fellowship: MPS-Ascend: The Ghost Algebra for Correlation Functions & Convexity of Anosov Representations
博士后奖学金:MPS-Ascend:相关函数的幽灵代数
  • 批准号:
    2316685
  • 财政年份:
    2023
  • 资助金额:
    $ 11.04万
  • 项目类别:
    Fellowship Award
Theoretical elucidation of hypergeometric functions behind multiple zeta values and multiple zeta algebra based on them.
多zeta值背后的超几何函数以及基于它们的多zeta代数的理论阐明。
  • 批准号:
    23K03026
  • 财政年份:
    2023
  • 资助金额:
    $ 11.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebraic study of L functions of modular forms of several variables and differential operators
多变量模形式的L函数和微分算子的代数研究
  • 批准号:
    23K03031
  • 财政年份:
    2023
  • 资助金额:
    $ 11.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Strategic construction and refinement of p-adic L-functions based on automorphic representation theory
基于自守表示理论的p进L函数的策略构建与细化
  • 批准号:
    22K03237
  • 财政年份:
    2022
  • 资助金额:
    $ 11.04万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了