Collaborative Research: A Bioinspired Approach towards Sustainable Membranes for Resilient Brine Treatment

合作研究:用于弹性盐水处理的可持续膜的仿生方法

基本信息

  • 批准号:
    2226505
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Many water treatment and industrial processes generate significant amounts of high-salinity brines including seawater desalination, inland brackish water desalination, and oil and gas production by fracking. The management of hazardous high-salinity brines from water desalination plants and oil/gas production wells has emerged as a global environmental challenge. Membrane distillation (MD) is a promising technology for the treatment of high-salinity brines that could reduce the amounts of brine that need to be disposed of while generating a purified water permeate to support industrial and agricultural usages. During the last decade, significant progress has been made toward the development of more efficient MD membranes with high wetting and scaling resistance for high-salinity brine treatment. However, these membranes are typically prepared by modifying their surfaces with long-chain per- and polyfluoroalkyl substances (PFAS), which have become priority pollutants due to increasing concerns about their persistence in the environment, stability, and toxicity to humans and living organisms. The overarching goal of this project is to explore the design and fabrication of wetting- and scaling-resistant MD membranes for brine treatment without the use of PFAS. Inspired by the unique repellency of springtails towards low surface tension liquids, the Principal Investigators propose to test the hypothesis that efficient MD membranes, with both high wetting resistance and high scaling resistance, can be fabricated by covalent attachment of springtail-inspired supracolloidal structures onto the surface of a hydrophobic flat sheet membrane. The successful completion of this project will benefit society through the development of new fundamental knowledge to guide the design and fabrication of PFAS-free membrane materials for robust and efficient brine treatment. Additional benefits to society will be achieved through outreach and educational activities including the mentoring of one graduate student at the University of Tennessee, Knoxville and one graduate student at Colorado State University.The effectiveness of membrane distillation (MD) as a brine treatment technology is limited by both the intrusion of brines into membrane pores (membrane pore wetting) and the precipitation of minerals on the membrane surfaces (membrane scaling). The goal of this project is to design and fabricate a new family of biomimetic wetting- and scaling-resistant MD membranes without using PFAS building blocks. To advance this goal, the Principal Investigators (PIs) proposal to explore new strategies to modify the surface of a commercially available hydrophobic flat sheet membrane by covalent attachment of supracolloidal structures that mimic the overhang texture of springtails and their unique capability to repel low surface tension liquids. These supracolloidal structures will be formed through controlled assembly of smaller colloids onto the surfaces of larger colloids that have overhang structures with negative curvature and non-fluorinated ligands. The specific objectives of the research are to: 1) Elucidate the design criteria of supracolloidal structures for wetting resistant membranes, 2) Characterize and unravel the mechanisms of scaling resistance of the new biomimetic MD membranes, and 3) Evaluate the treatment effectiveness of the new MD membranes using model brine mixtures and a high salinity produced water from an oil and gas production field in Colorado. The successful completion of this project has the potential for transformative impact through the generation of new fundamental knowledge and functional materials to advance the development of PFAS-free MD membranes for efficient and cost-effective treatment of high salinity brines. To implement the educational and training goals of this project, the Principal Investigators (PIs) plan to integrate the findings from this research into existing undergraduate and graduate courses at the University of Tennessee, Knoxville (UTK) and Colorado State University (CSU). In addition, the PIs propose to leverage existing programs at UTK and CSU to launch outreach activities to recruit and engage high and middle school students from underrepresented groups with a focus on the utilization of bioinspired materials to improve water sustainability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多水处理和工业过程都会产生大量的高含量盐水,包括海水脱盐,内陆咸水淡化以及通过压裂产生石油和天然气。从水生化厂和石油/天然气生产井中对危险的高含量盐水的管理已成为全球环境挑战。膜蒸馏(MD)是一项有前途的技术,用于治疗高盐度​​盐水,可以减少需要处置的盐水量,同时产生纯净的水渗透以支持工业和农业用途。在过去的十年中,在高效的MD膜中取得了重大进展,具有高润湿和缩放耐药性以进行高含量的盐水处理。然而,这些膜通常是通过用长链人脉和多氟烷基物质(PFA)修饰表面来制备的,这些膜由于对环境中的持久性,稳定性和对人类和生物有机体的毒性的关注而越来越担心,它们已成为优先污染物。该项目的总体目标是探索润湿和耐缩放的MD膜的设计和制造,用于盐水处理,而无需使用PFA。首席研究人员的灵感来自Springtails对低表面张力液体的独特驱除性,建议检验以下假设:高效的MD膜具有高润湿性和高尺度耐药性,可以通过共价附着Springtail-Springtail-Springs-Inspired的肩上结构的附着,使其呈浅脂化表面的表面。该项目的成功完成将通过发展新的基本知识来使社会受益,从而指导无PFA的膜材料的设计和制造,以实现强大而有效的盐水处理。将通过宣传和教育活动来实现社会的其他好处,包括田纳西大学,诺克斯维尔大学的一名研究生和科罗拉多州立大学的一名研究生。该项目的目的是设计和制造一个新的仿生润湿和耐缩放的MD膜家族,而无需使用PFAS构建块。为了促进这一目标,首席研究人员(PIS)提案探索了新的策略,以通过共价附着在可模仿Springtails的悬垂质地及其独特的能力来重现低表面张力液体的悬垂性质地上,通过共价附件来修改商业上可用的疏水平板膜表面。这些上固体结构将通过较小的胶体的受控组装形成,这些胶体较小的胶体表面,这些胶体的表面具有负曲率和非氟化配体的悬垂结构。研究的具体目的是:1)阐明抗耐受性膜的上胶质上结构的设计标准,2)2)表征和阐明新生物可能的MD膜的缩放缩放抗性机制,以及3)评估新的MD膜使用型号的机油和saliation a saliation and saliation and An aN Oriether and Salline and Sallinity and saliation and saliation and saliation and saliation and saliation and sallient and saliation and salliety commibetic的抗膜。该项目的成功完成通过产生新的基本知识和功能材料,从而推动无PFA的MD膜的发展,从而有效地进行变革影响,从而有效地且具有成本效益的高盐度盐水处理。为了实施该项目的教育和培训目标,首席研究人员(PIS)计划将这项研究的发现整合到田纳西大学,诺克斯维尔大学(UTK)和科罗拉多州立大学(CSU)的现有本科和研究生课程中。此外,PIS建议利用UTK和CSU的现有计划发起外展活动,以招募和吸引来自代表性不足的团体的高中生和中学生,重点是利用生物启发的材料来改善水的可持续性。该奖项反映了NSF的法定任务,并通过使用基金会的智力效果进行评估,并通过评估了Crcrit and crarit and crarit and crarit and crarit and crarit and crarit and crarit and crowia affectia奖。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tiezheng Tong其他文献

Mineral scaling and organic fouling in electrodialytic crystallization
  • DOI:
    10.1016/j.memsci.2024.123024
  • 发表时间:
    2024-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yiqun Yao;Xudong Zhang;Ruoyu Wang;Shihong Lin;Tiezheng Tong
  • 通讯作者:
    Tiezheng Tong
Environmental nanotoxicology: Where are we now?
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tiezheng Tong
  • 通讯作者:
    Tiezheng Tong

Tiezheng Tong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tiezheng Tong', 18)}}的其他基金

CAREER: Harnessing Mineralogy and Polymer Science to Elucidate Mechanisms and Mitigation Strategies for Mineral Scaling in Membrane Desalination
职业:利用矿物学和聚合物科学阐明膜淡化中矿物结垢的机制和缓解策略
  • 批准号:
    2145627
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Elucidating the Coupling of Inorganic Scaling and Organic Fouling in Reverse Osmosis Desalination: An Integrated Experimental and Computational Approach
合作研究:阐明反渗透海水淡化中无机结垢和有机污垢的耦合:一种综合实验和计算方法
  • 批准号:
    2143970
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

生物碱结构启发的核酸脂质递药系统及其多维协同脑靶向研究
  • 批准号:
    82373808
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
皮肤启发的原位成型低溶胀水凝胶可控缓释莲子心生物碱重编程肿瘤相关巨噬细胞的研究
  • 批准号:
    82305052
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
生源启发的二倍半萜 Bipolarolides A–D的集群式合成研究
  • 批准号:
    22371102
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
生物启发的NiTi/TC4可变内流道颤振抑制机理及激光选区熔化成形研究
  • 批准号:
    52275332
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
生物启发的NiTi/TC4可变内流道颤振抑制机理及激光选区熔化成形研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Bioinspired High Energy Recycling Mechanism Ankle Foot Prosthesis
合作研究:仿生高能回收机制踝足假肢
  • 批准号:
    2231031
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Bioinspired High Energy Recycling Mechanism Ankle Foot Prosthesis
合作研究:仿生高能回收机制踝足假肢
  • 批准号:
    2231032
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Design, Flight Control, and Autonomous Navigation of Bioinspired Morphing Micro Aerial Vehicles for Operation in Confined Spaces
合作研究:用于密闭空间操作的仿生变形微型飞行器的设计、飞行控制和自主导航
  • 批准号:
    2140650
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: A Bioinspired Approach towards Sustainable Membranes for Resilient Brine Treatment
合作研究:用于弹性盐水处理的可持续膜的仿生方法
  • 批准号:
    2226501
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Design, Flight Control, and Autonomous Navigation of Bioinspired Morphing Micro Aerial Vehicles for Operation in Confined Spaces
合作研究:用于密闭空间操作的仿生变形微型飞行器的设计、飞行控制和自主导航
  • 批准号:
    2142519
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了