Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
基本信息
- 批准号:2226347
- 负责人:
- 金额:$ 28.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will contribute to the national prosperity by providing new calibration methods to generate value-producing opportunities for digital twins in many applications, including energy, healthcare, and manufacturing. A digital twin is a digital representation of a complex physical system that can be useful for monitoring, forecasting, and testing the system in a virtual world. Parameter calibration of digital twins with observational data is one of the most important steps in enabling them to closely replicate a physical system. Today, advanced data sensing and collection technologies provide massive data points from many components of a complex system. The success of this project will provide a means of robust estimation by efficient sampling from these large datasets, thereby significantly reducing the computational burden of calibration. The outreach activities of the project will improve workforce preparation through engagement with industrial practitioners, broaden participation through involvement of underrepresented students in research, and provide opportunities for K-12 students to learn about the field of data science.Quantitative methods established during this project for digital twin calibration will fully leverage the power of Big Data while addressing the research challenges brought forth by the size and complexity of the datasets. Specific research tasks include: development of stochastic optimization approaches reconciled with statistical theories that will optimally guide simulation experiments by identifying the best (smallest most informative) subsets of data for computational efficiency; extending the integrative optimization framework to be applicable for a wide range of calibration problems, including multi-dimensional, functional, and time-variant calibrations, with theoretical and practical implications; and seamless incorporation of input uncertainty with optimization to dramatically enhance the solution's robustness while maintaining computational tractability. The approach will be validated through real-word case studies in building energy systems and wind power systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将提供新的校准方法,为能源、医疗保健和制造等许多应用中的数字孪生创造价值创造机会,从而为国家繁荣做出贡献。数字孪生是复杂物理系统的数字表示,可用于在虚拟世界中监视、预测和测试系统。使用观测数据对数字孪生进行参数校准是使其能够紧密复制物理系统的最重要步骤之一。 如今,先进的数据传感和收集技术提供了来自复杂系统的许多组件的大量数据点。该项目的成功将提供一种通过从这些大型数据集中进行有效采样来进行稳健估计的方法,从而显着减少校准的计算负担。该项目的外展活动将通过与工业从业者的接触来改善劳动力准备,通过代表性不足的学生参与研究来扩大参与,并为 K-12 学生提供了解数据科学领域的机会。在该项目期间建立的定量方法数字孪生校准将充分利用大数据的力量,同时解决数据集的规模和复杂性带来的研究挑战。具体的研究任务包括:开发与统计理论相一致的随机优化方法,通过识别最佳(信息量最大的)数据子集来优化计算效率,从而最佳地指导模拟实验; 扩展综合优化框架以适用于广泛的校准问题,包括多维、函数和时变校准,具有理论和实践意义;将输入不确定性与优化无缝结合,以显着增强解决方案的鲁棒性,同时保持计算的易处理性。该方法将通过建筑能源系统和风力发电系统的实际案例研究进行验证。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Wake effect parameter calibration with large-scale field operational data using stochastic optimization
- DOI:10.1016/j.apenergy.2023.121426
- 发表时间:2023-10
- 期刊:
- 影响因子:11.2
- 作者:Pranav Jain;S. Shashaani;E. Byon
- 通讯作者:Pranav Jain;S. Shashaani;E. Byon
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sara Shashaani其他文献
Stochastic Constraints: How Feasible Is Feasible?
随机约束:可行的程度如何?
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
David J. Eckman;Shane G. Henderson;Sara Shashaani - 通讯作者:
Sara Shashaani
Dynamic Stratification and Post-Stratified Adaptive Sampling for Simulation Optimization
用于仿真优化的动态分层和分层后自适应采样
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Pranav Jain;Sara Shashaani - 通讯作者:
Sara Shashaani
On Common-Random-Numbers and the Complexity of Adaptive Sampling Trust-Region Methods
关于常见随机数和自适应采样信赖域方法的复杂性
- DOI:
10.1007/s00269-009-0334-y - 发表时间:
2023 - 期刊:
- 影响因子:1.4
- 作者:
Yunsoo Ha;Sara Shashaani;R. Pasupathy - 通讯作者:
R. Pasupathy
Building Trees for Probabilistic Prediction via Scoring Rules
通过评分规则构建概率预测树
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.5
- 作者:
Sara Shashaani;O. Surer;Matthew Plumlee;Seth Guikema - 通讯作者:
Seth Guikema
Two-Stage Estimation and Variance Modeling for Latency-Constrained Variational Quantum Algorithms
延迟约束变分量子算法的两阶段估计和方差建模
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yunsoo Ha;Sara Shashaani;M. Menickelly - 通讯作者:
M. Menickelly
Sara Shashaani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
相控阵馈源定标和波束校准关键技术研究
- 批准号:12303095
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
自校准型嵌段共聚物的精准合成及其三维自组装行为研究
- 批准号:22308059
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大气水汽长期观测自校准差分吸收激光雷达关键技术研究
- 批准号:42305142
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
极小子流形几何与校准几何的研究
- 批准号:12371055
- 批准年份:2023
- 资助金额:39 万元
- 项目类别:面上项目
基于土壤气体传输机制的土壤呼吸气室法测量误差校准研究
- 批准号:32371668
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU: Calibrating the Water Isotope Thermometer in Antarctica Using Abrupt Heinrich Event Signatures in the EDML Ice Core
合作研究:REU:利用 EDML 冰芯中的突变海因里希事件特征校准南极洲的水同位素温度计
- 批准号:
2315928 - 财政年份:2023
- 资助金额:
$ 28.23万 - 项目类别:
Continuing Grant
Collaborative Research: Calibrating Digital Twins in the Era of Big Data with Stochastic Optimization
合作研究:利用随机优化校准大数据时代的数字孪生
- 批准号:
2226348 - 财政年份:2023
- 资助金额:
$ 28.23万 - 项目类别:
Standard Grant
Collaborative Research: REU: Calibrating the Water Isotope Thermometer in Antarctica Using Abrupt Heinrich Event Signatures in the EDML Ice Core
合作研究:REU:利用 EDML 冰芯中的突变海因里希事件特征校准南极洲的水同位素温度计
- 批准号:
2315927 - 财政年份:2023
- 资助金额:
$ 28.23万 - 项目类别:
Continuing Grant
Collaborative Research: Calibrating the Pace of Paleotropical Environmental and Ecological Change During Earth’s Previous Icehouse
合作研究:校准地球以前的冰库期间古热带环境和生态变化的步伐
- 批准号:
2221050 - 财政年份:2022
- 资助金额:
$ 28.23万 - 项目类别:
Standard Grant
Collaborative Research: Calibrating the Pace of Paleotropical Environmental and Ecological Change During Earth’s Previous Icehouse
合作研究:校准地球以前的冰库期间古热带环境和生态变化的步伐
- 批准号:
2219947 - 财政年份:2022
- 资助金额:
$ 28.23万 - 项目类别:
Standard Grant