ERASE-PFAS: Bottom-up synthesis of polymeric membranes for PFAS sequestration
ERASE-PFAS:自下而上合成用于 PFAS 封存的聚合物膜
基本信息
- 批准号:2226329
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Anti-corrosion and anti-stain coatings have been increasingly present in our daily lives facilitating the cleaning of objects and/or materials, slowing down material’s deterioration, and protecting them against chemical or thermal stress. Naturally, as these coatings increase in performance, they become more attractive to the public increasing demand, and thus driving forward their manufacture. One large class of molecules forming part of these coatings are the per- and polyfluoroalkyl substances (PFAS). Several thousands of PFAS have been identified, some of which are made in a very large scale. The inherent chemical properties of PFAS makes them essentially unbreakable when they leak into ecosystems. Unfortunately, the presence of PFAS in drinking water across the U.S. is now well-documented and human ingestion of PFAS has been associated with a number of diseases and cancer. The grand challenge ahead of us is to find ways of removing PFAS from the environment, especially when these substances contaminate drinking water sources. The goal of this project is to develop synthetic membranes capable of filtering water to remove the majority of the PFAS to well below the threshold of 70 parts-per-trillion, as established by the U.S. Environmental Protection Agency. Successful completion of the proposed research will develop the chemical pathways and basic understanding to create high-performing membranes to remove PFAS from water, ultimately with the goal of protecting public health. Additional benefits to society will be accomplished through education and training including the mentoring of two graduate students at Rice University.Per- and polyfluoroalkyl substances (PFAS) are molecules generally composed of 1) an anionic head group, carboxylate or sulfonate; and 2) a fluorinated backbone, which are incredibly resistant to environmental degradation. Their chemical and thermal stability made them ideal substances to use to protect materials from degrading or from events such as fires. Enormous quantities of FPAS were produced until health-related effects initiated the ban of certain species around the turn of the century. However, the large quantity that was produced coupled with their environmental persistence has resulted in widespread contamination of the environment, especially drinking water sources. Documented health risks posed by PFAS to humans include severe malformations in pregnant women, cancer in adults, liver malfunction, thyroid disease, decreased fertility, high cholesterol, and obesity. Given that PFAS have weak affinity and binding towards most chemical adsorbents, the challenge ahead is to design membranes capable of removing them from contaminated water. The overarching goal of this project is to design recognition sites for anionic PFAS, which will be later developed and incorporated into membranes used to filter water that would sequester long- and short-chain PFAS. To accomplish this central objective, the project will 1) design recognition sites embedded within supramolecular scaffolds; 2) synthesize, characterize, and determine the anion binding properties of the most promising scaffolds; and 3) polymerize the most promising architectures via olefinic and/or epoxide functional groups incorporated into the supramolecular scaffold, and test their PFAS sequestration properties in aqueous samples. The successful completion of this project will establish the fundamental parameters to enhance PFAS binding within molecular scaffolds to later translate this knowledge into the design of polymeric filtration materials. Education and outreach activities include creating seminars and hands-on workshops for high school and undergraduate students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在我们的日常生活中增加了抗腐蚀和抗染色涂层,支持对物体和/或材料清洁,减慢材料的定义,并保护它们免受化学或热应激。自然,随着这些涂层的性能提高,它们对公众的需求越来越有吸引力,从而推动了他们的制造业。这些涂层的一部分分子是每种和多氟烷基物质(PFA)。已经确定了数千个PFA,其中一些是非常大规模制造的。 PFA的继承化学特性使其在泄漏到生态系统中实质上是牢不可破的。不幸的是,现在美国饮用水中PFA的存在已有据可查,人类对PFA的摄入与多种疾病和癌症有关。我们面临的巨大挑战是找到将PFA从环境中删除的方法,尤其是当这些物质污染饮用水源时。该项目的目的是开发能够过滤水的合成膜,以将大多数PFA拆除到美国环境保护局确定的远低于70分千万亿分的阈值。拟议研究的成功完成将发展化学途径和基本理解,以创建高性能的膜以从水中清除PFA,最终以保护公共卫生的目的。将通过教育和培训来实现社会的额外好处,包括赖斯大学的两名研究生的心理。每种和多氟烷基物质(PFA)是通常由1)组成的分子1)一个阴离子头组,羧酸盐或磺酸盐; 2)氟化主链,越来越对环境降解具有抗性。它们的化学和热稳定性使它们成为保护材料免受降解或火灾等事件的理想物质。生产大量FPA,直到与健康相关的效应在本世纪初期启动某些物种的禁令。但是,产生的大量以及它们的环境持久性导致环境,尤其是饮用水源的宽度污染。 PFA对人类带来的健康风险包括孕妇的严重畸形,成人癌症,肝功能故障,甲状腺疾病,降低生育能力,高胆固醇和肥胖。鉴于PFA对大多数化学吸附剂具有较弱的亲和力,因此面临的挑战是设计能够将其从受污染的水中取出的机制。该项目的总体目标是为阴离子PFA设计识别位点,后来将开发并将其纳入用于过滤水的水的机制中,以隔离长链PFA。为了实现这一中心目标,该项目将1)嵌入超分子支架内的设计识别站点; 2)合成,表征和确定最有希望的支架的阴离子结合特性; 3)通过掺入超分子支架中的烯烃和/或环氧化官能团的聚合将最有前途的体系结构聚合,并测试其在水性样品中的PFAS隔离性能。该项目的成功完成将建立基本参数,以增强分子支架内的PFA结合,然后将这些知识转化为聚合物过滤材料的设计。教育和外展活动包括为高中和本科生创建下水道和动手实践研讨会。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估标准,被认为是通过评估而被视为珍贵的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raul Hernandez Sanchez其他文献
Raul Hernandez Sanchez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raul Hernandez Sanchez', 18)}}的其他基金
CAREER: Tubularenes: A Novel Class of Conjugated Molecular Nanotubes
职业:管芳烯:一类新型共轭分子纳米管
- 批准号:
2302628 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
ERASE-PFAS: Bottom-up synthesis of polymeric membranes for PFAS sequestration
ERASE-PFAS:自下而上合成用于 PFAS 封存的聚合物膜
- 批准号:
2246167 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
CAREER: Tubularenes: A Novel Class of Conjugated Molecular Nanotubes
职业:管芳烯:一类新型共轭分子纳米管
- 批准号:
2042423 - 财政年份:2021
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
相似国自然基金
饮用水膜处理系统服役中PFAS释放规律及去除机理研究
- 批准号:52370137
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
污泥深度脱水中PFAS转化调控与EPS指纹的响应关联机制
- 批准号:42307520
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
铁泥碳、硫缺陷调控构建内电场驱动催化体系修复地下水PFAS的界面作用机制
- 批准号:42307065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
去除水中新PFAS的高效选择性氟化-季铵COFs材料的构建及吸附机理研究
- 批准号:22366033
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
单原子Pd@MXene穿透式电极电催化还原PFAS性能与界面活性位点调控原理
- 批准号:52370084
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CAREER: Transformation potential of per- and polyfluoroalkyl substances (PFAS) in drinking water distribution systems
职业:全氟烷基物质和多氟烷基物质 (PFAS) 在饮用水分配系统中的转化潜力
- 批准号:
2338480 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
農地への有機フッ素化合物(PFAS)輸送経路と農地における動態の解明
阐明有机氟化合物(PFAS)向农田的迁移途径和农田动态
- 批准号:
23K27024 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Simply forever: Tackling PFAS complexity through mode of action assignment
永远简单:通过行动模式分配解决 PFAS 复杂性
- 批准号:
NE/Z000084/1 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Research Grant
生体汚染レベルの有機フッ素化合物(PFAS)による生体恒常性かく乱作用の解明
阐明有机氟化合物 (PFAS) 在生物污染水平下的稳态破坏作用
- 批准号:
24K15309 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
フッ素その場無機化による環境負荷低減型PFAS処理プロセスの開発
开发 PFAS 处理工艺,通过氟原位矿化减少对环境的影响
- 批准号:
24K15362 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (C)