Collaborative Research: CNS Core: Small: Edge AI with Streaming Data: Algorithmic Foundations for Online Learning and Control

合作研究:中枢神经系统核心:小型:具有流数据的边缘人工智能:在线学习和控制的算法基础

基本信息

  • 批准号:
    2225950
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Many emerging applications, such as smart healthcare, autonomous driving, and augmented reality, rely on applying real-time Artificial Intelligence (AI) to streaming data that are constantly generated online. Edge AI, which moves AI services to the network edge close to the end users and devices where data streams are generated, is crucial for reducing latency and communication bottlenecks and enabling fast and accurate inference decisions. However, edge AI for online streaming data poses significant challenges due to the unpredictable dynamics of the streaming data and the limited computation/communication capability at the network edge. This project addresses these challenges by developing both new theoretic models that integrate sophisticated learning methods with advanced edge-network control, and practical algorithms that significantly improve the accuracy and timeliness of edge AI services for streaming data. Specifically, the project will focus on three closely-related thrusts: (i) online learning policies for model selection will be developed to quickly identify which machine-learning models should be dynamically deployed at the edge servers for best inference accuracy, while accounting for the heterogeneous switching and feedback costs; (ii) distributed online transfer learning methods will be developed to quickly retrain new machine learning models at the edge upon new streaming data; and (iii) partial-index based edge-network control policies will be developed to optimize the timeliness of interactive edge-AI services under tight resource constraints.Both edge networks and AI are considered crucial elements of next-generation wireless networks. This project will directly benefit network operators and service providers that deploy and operate edge-AI systems. Specifically, the results will help them automate the complex decision-making process required for the end-to-end orchestration of such systems, and improve the accuracy and timeliness of the edge-AI services despite the constantly-changing environments. This project will also benefit the end users of emerging applications powered by edge AI, improving their user experience and well-being. More broadly, the theories and algorithms developed in this project for learning/control co-design will not only transform edge AI, but also benefit other disciplines with similar requirements for optimization under significant dynamism and uncertainty. Finally, this project will contribute teaching and training materials to multiple undergraduate and graduate courses, and will engage women and underrepresented minority students by reaching out to local schools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多新兴应用程序,例如智能医疗保健,自动驾驶和增强现实,都依靠将实时人工智能(AI)应用于不断在线生成的流媒体数据。 Edge AI将AI服务移至网络边缘,靠近生成数据流的最终用户和设备,对于减少延迟和通信瓶颈至关重要,并实现快速,准确的推理决策。但是,由于流媒体数据的不可预测动态以及网络边缘的有限的计算/通信能力,用于在线流数据的Edge AI构成了重大挑战。该项目通过开发将复杂的学习方法与先进的边缘网络控制和实用算法相结合的新理论模型来解决这些挑战,从而显着提高了Edge AI服务用于流数据的准确性和及时性。具体而言,该项目将集中在三个密切相关的推力上:(i)将制定用于模型选择的在线学习政策,以快速确定应在边缘服务器上动态部署哪些机器学习模型,以最佳推理准确性,同时考虑异类的切换和反馈成本; (ii)将开发分布式的在线转移学习方法,以快速在新的流数据上重新培训新的机器学习模型; (iii)将制定基于部分索引的边缘网络控制策略,以优化紧密的资源约束下交互式边缘服务的及时性。两者的边缘网络和AI都被认为是下一代无线网络的重要元素。该项目将直接使部署和操作边缘系统系统的网络运营商和服务提供商受益。具体而言,结果将帮助他们自动化此类系统端到端编排所需的复杂决策过程,并提高Edge-AI服务的准确性和及时性,尽管环境不断变化。该项目还将使Edge AI提供支持的新兴应用程序的最终用户受益,从而改善其用户体验和福祉。更广泛地说,在该项目中开发的用于学习/控制共同设计的理论和算法不仅会改变边缘AI,而且使其他学科受益于在重大动态和不确定性下具有相似优化要求的其他学科。最后,该项目将向多个本科和研究生课程贡献教学和培训材料,并通过与当地学校接触来吸引妇女和代表性不足的少数族裔学生。这项奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查标准来通过评估来通过评估来支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charlie Hu其他文献

A performance comparison of homeless and home-based lazy release consistency protocols in software shared memory
软件共享内存中无家可归者和基于家庭的延迟释放一致性协议的性能比较
A Data Reorganization Technique for Improving Data Locality ofIrregular Applications in Software Distributed Shared MemoryY
软件分布式共享内存中提高不规则应用数据局部性的数据重组技术
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Charlie Hu
  • 通讯作者:
    Charlie Hu
On the efficacy of fine-grained traffic splitting protocols in data center networks
数据中心网络中细粒度流量分流协议的功效
  • DOI:
    10.1145/2254756.2254818
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Dixit;P. Prakash;R. Kompella;Charlie Hu
  • 通讯作者:
    Charlie Hu
OpenMP on Networks of Workstations
工作站网络上的 OpenMP

Charlie Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charlie Hu', 18)}}的其他基金

Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
  • 批准号:
    2312834
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CNS Core: Small: Software-Defined Video Analytics Pipeline: Enabling Resilient, High-Accuracy, and Resource-Effective Video Analytics
CNS 核心:小型:软件定义的视频分析管道:实现弹性、高精度和资源高效的视频分析
  • 批准号:
    2211459
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CNS Core: Small: A Split Software Architecture for Enabling High-Quality Mixed Reality on Commodity Mobile Devices
CNS 核心:小型:用于在商用移动设备上实现高质量混合现实的分离式软件架构
  • 批准号:
    2112778
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CNS Core: Small: Integrating Real-Time Learning and Control for Large and Dynamic Networked Computer Systems
CNS 核心:小型:集成大型动态网络计算机系统的实时学习和控制
  • 批准号:
    2113893
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
ICN-WEN: Collaborative Research: SPLICE: Secure Predictive Low-Latency Information Centric Edge for Next Generation Wireless Networks
ICN-WEN:协作研究:SPLICE:下一代无线网络的安全预测低延迟信息中心边缘
  • 批准号:
    1719369
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CSR: Small: Extending Smartphone Battery Life via Prescriptive Energy Profiling
CSR:小:通过规范的能量分析延长智能手机电池寿命
  • 批准号:
    1718854
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SBIR Phase I: Enabling Techologies for Energy-Centric Mobile App Design to Extend Mobile Device Battery Life
SBIR 第一阶段:以能源为中心的移动应用程序设计支持技术,以延长移动设备的电池寿命
  • 批准号:
    1549214
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SHF: Small: Detecting and Mitigating Smartphone Energy Bugs using Compiler and Runtime Analysis
SHF:小型:使用编译器和运行时分析检测和缓解智能手机能源错误
  • 批准号:
    1320764
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NetSE: Medium: Collaborative Research: Auditing Internet Content for Credibility, Fairness, and Privacy
NetSE:媒介:协作研究:审核互联网内容的可信度、公平性和隐私
  • 批准号:
    1065456
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NeTS-NOSS: AIDA: Autonomous Information Dissemination in RAndomly Deployed Sensor Networks
NeTS-NOSS:AIDA:随机部署的传感器网络中的自主信息传播
  • 批准号:
    0721873
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

IL-17A通过STAT5影响CNS2区域甲基化抑制调节性T细胞功能在银屑病发病中的作用和机制研究
  • 批准号:
    82304006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miR-20a通过调控CD4+T细胞焦亡促进CNS炎性脱髓鞘疾病的发生及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miR-20a通过调控CD4+T细胞焦亡促进CNS炎性脱髓鞘疾病的发生及机制研究
  • 批准号:
    82201491
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
血浆CNS来源外泌体中寡聚磷酸化α-synuclein对PD病程的提示研究
  • 批准号:
    82101506
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于脑微血管内皮细胞模型的毒力岛4在单增李斯特菌CNS炎症中的作用及机制研究
  • 批准号:
    32160834
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了