Collaborative Research: RI: III: SHF: Small: Multi-Stakeholder Decision Making: Qualitative Preference Languages, Interactive Reasoning, and Explanation

协作研究:RI:III:SHF:小型:多利益相关者决策:定性偏好语言、交互式推理和解释

基本信息

  • 批准号:
    2225823
  • 负责人:
  • 金额:
    $ 29.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

The ability to express and reason about preferences over a set of alternatives is central to rational decision-making in a broad range of applications, such as product design, public policy, health care, information security, and privacy, among others. Because of the lack of quantitative preferences in many practical settings, there is increasing interest in methods for representing and reasoning with qualitative preferences. Furthermore, practical decision making scenarios typically involve multiple stakeholders, with possibly conflicting preferences, and the preferences of some stakeholders may sometimes override those of others, e.g., because of the relative positions of the stakeholders within an organization. However, existing preference languages and methods are limited to the single stakeholder setting. Against this background, this project brings together a team of researchers with complementary expertise in formal methods, artificial intelligence, and preference reasoning to develop methods and tools for representing and reasoning with multi-stakeholder preferences. The practical open-source multi-stakeholder decision support tools resulting from the project will significantly lower the barrier to the applications of AI and formal methods for multi-stakeholder decision making in a number of domains. The project enhances research-based training of graduate and undergraduate students, including females and members of other under-represented groups, at ISU and PSU in artificial intelligence, formal methods, and related areas of national importance. Broad dissemination of research results (including publications, open source software, data, tutorials, course materials), incorporation of research results into undergraduate and graduate curricula in Computer Science, Information Sciences and Technology, Data Sciences, and related disciplines, and outreach to targeted application domains e.g., health, public policy, security and privacy, that would benefit from advanced tools for multi-stakeholder decision-making further enhance the broader impacts of the project.The primary intellectual merit of the project centers around substantial advances in the current state-of-the-art in languages, algorithms, and software for multi-stakeholder representation and reasoning with preferences. The researchers will develop Generalized Conditional Relative Importance and Preference Theory (GCRIPT), an expressive language for multi-stakeholder preference representation that subsumes existing preference languages. The resulting preference reasoners will be able to (a) analyze preferences expressed in GCRIPT, (b) reason with the preferences of multiple stakeholders, taking into account not only their individual preferences, but also hierarchies that give precedence to the preferences of some stakeholders over those of others, and (c) offer easy-to-understand explanations of the preferred choices as well as their impacts on the stakeholders. The project will also enhance the underlying model checking techniques that form the core technology for the preference reasoning framework; e.g., in the areas of incremental model checking, counter-example analysis and justification. The resulting advances in knowledge representation and formal methods contribute to AI systems that substantially augment and extend human capabilities in multi-stakeholder decision making.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在广泛的应用程序中(例如产品设计,公共政策,医疗保健,信息安全和隐私等)等广泛的应用程序中,表达和理性的偏好能力和理由是理性决策的核心。由于在许多实际环境中缺乏定量偏好,因此对代表和推理的方法具有越来越多的兴趣。此外,实际决策方案通常涉及多个利益相关者,可能会有矛盾的偏好,而某些利益相关者的偏好有时可能会覆盖其他利益相关者,例如,由于组织在组织中的相对立场,因此有时可能会覆盖其他利益相关者。但是,现有的偏好语言和方法仅限于单个利益相关者设置。在这种背景下,该项目汇集了一群研究人员,具有正式方法,人工智能和偏好推理方面的补充专业知识,以开发以多利益相关者偏好来代表和推理的方法和工具。该项目产生的实用开源多方利益相关者决策支持工具将大大降低AI和正式方法在许多领域中的多方利益相关者决策的应用的障碍。该项目增强了基于研究的研究生和本科生的培训,包括女性以及其他代表性不足的群体,在人工智能,正式方法以及具有国家重要性的相关领域的ISU和PSU的其他培训。广泛传播研究结果(包括出版物,开源软件,数据,教程,课程材料),将研究结果纳入本科和研究生课程,计算机科学,信息科学和技术,数据科学和相关学科,以及对目标应用领域的范围内的范围,例如健康,公共政策,安全,安全和隐私权,将受益于范围,安全性,安全性,安全性和隐私权,并将其受益于业务范围。该项目的智力优点围绕着当前最新的语言,算法和软件,用于多利益相关者代表和推理,并具有偏好的推理。研究人员将开发一般的有条件相对重要性和偏好理论(Gcript),这是一种符合现有偏好语言的多利益相关者偏好表示的表达语言。由此产生的偏好推理者将能够(a)分析在gcript中表达的偏好,(b)具有多个利益相关者的偏好的原因,不仅要考虑到他们的个人偏好,而且还考虑了层次结构,这些层次结构为某些利益相关者而不是其他利益相关者的偏好提供了优先考虑,并且(c)可以轻松地塑造对他们偏好的选择,并及其偏好的选择及其对偏好的影响以及及其及其及其及其影响的影响。该项目还将增强构成偏好推理框架的核心技术的基本模型检查技术;例如,在增量模型检查的领域,反示例分析和理由。随之而来的知识表示和形式方法的进步有助于AI系统,这些系统实质上扩大了多方利益相关者决策的人类能力。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查标准通过评估来获得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samik Basu其他文献

SoC Design Approach Using Convertibility Verification
使用可转换性验证的 SoC 设计方法
Quotient-based control synthesis for partially observed non-deterministic plants with mu-calculus specifications
基于商的控制合成,用于具有 mu 微积分规范的部分观察的非确定性植物
Preclinical specificity & activity of a fully human 41BB-expressing anti-CD19 CART- therapy for treatment-resistant autoimmune disease
  • DOI:
    10.1016/j.omtm.2024.101267
  • 发表时间:
    2024-06-13
  • 期刊:
  • 影响因子:
  • 作者:
    Binghao J. Peng;Andrea Alvarado;Hangameh Cassim;Soprina Guarneri;Steven Wong;Jonathan Willis;Julia SantaMaria;Ashley Martynchuk;Victoria Stratton;Darshil Patel;Chien-Chung Chen;Yan Li;Gwendolyn K. Binder;Rebecca Dryer-Minnerly;Jinmin Lee;Samik Basu
  • 通讯作者:
    Samik Basu
System-on-a-Chip Design
片上系统设计
  • DOI:
    10.1007/978-1-4614-7864-5_1
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Sinha;P. Roop;Samik Basu
  • 通讯作者:
    Samik Basu
Compositional Analysis for Verification of Parameterized Systems
用于验证参数化系统的成分分析

Samik Basu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samik Basu', 18)}}的其他基金

A Model Checking based Framework for Analyzing Information-Propagation over Networks
基于模型检查的网络信息传播分析框架
  • 批准号:
    1555780
  • 财政年份:
    2015
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Formal Analysis of Distributed Interactions
SHF:小型:协作研究:分布式交互的形式分析
  • 批准号:
    1116836
  • 财政年份:
    2011
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
EAGER: Decision Support System for Reasoning with Preferences
EAGER:带有偏好的推理决策支持系统
  • 批准号:
    1143734
  • 财政年份:
    2011
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
Interactive and Verifiable Composition of Web Services To Satisfy End-User Goals
交互式且可验证的 Web 服务组合以满足最终用户目标
  • 批准号:
    0702758
  • 财政年份:
    2007
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Learning Classifiers From Autonomous, Semantically Heterogeneous, Distributed Data
协作研究:从自治、语义异构、分布式数据中学习分类器
  • 批准号:
    0711356
  • 财政年份:
    2007
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Continuing Grant

相似国自然基金

跨膜蛋白LRP5胞外域调控膜受体TβRI促钛表面BMSCs归巢、分化的研究
  • 批准号:
    82301120
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Dectin-2通过促进FcεRI聚集和肥大细胞活化加剧哮喘发作的机制研究
  • 批准号:
    82300022
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
TβRI的UFM化修饰调控TGF-β信号通路和乳腺癌转移的作用及机制研究
  • 批准号:
    32200568
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
藏药甘肃蚤缀β-咔啉生物碱类TβRI抑制剂的发现及其抗肺纤维化作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
藏药甘肃蚤缀β-咔啉生物碱类TβRI抑制剂的发现及其抗肺纤维化作用机制研究
  • 批准号:
    82204762
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313131
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了