CRII:III:Development of deep learning methods for high-resolution 3D genome structure spatial reconstruction

CRII:III:高分辨率3D基因组结构空间重建深度学习方法的开发

基本信息

项目摘要

An increase in the amount and resolution of data from different individuals and cell types, from multiple cells, single cells, or subcellular localizations, has consequently increased the complexity of these datasets. This increase means we need more sophisticated and automated approaches to infer patterns and structures from these datasets. The cell's three-dimensional (3D) chromosome and genome organization structure is one of the vital structures deducible in our data-rich society. Reconstructing the 3D organization of the genome is a complicated and challenging task. Nevertheless, it is necessary to understand many cellular activities, such as gene expression, gene stability, and regulation. To improve the understanding of chromosome organization within a cell, genomic technologies based on chromosome conformation capture techniques, particularly Hi-C, were developed. This development greatly improved cellular study and led to the development of multiple 3D chromosome structure reconstruction methods over the years. Although many 3D chromosome structure reconstruction methods have been proposed, detailed insight into the structural architecture of the chromosome and genome at a high resolution (=5kb) is lacking. This project aims to develop an advanced and scalable algorithm for high-resolution 3D genome reconstruction from Hi-C data that provides enough detail to explain biological activities such as gene-gene interaction at a refined scale. This project will be developed as open-source tools and software. Also, the multidisciplinary nature of this project provides a mechanism for training and providing hands-on learning and mentoring opportunities in teaching and research to students at both undergraduate and graduate levels.Specifically, the ultimate objective of this project is to develop computational and machine learning-based frameworks to elucidate the interplay between the hierarchical organization within the genome and its functions through high-resolution(=5kb) 3D structure reconstruction. This project is expected to develop algorithms and computational tools to advance 3D genome organization research in the following aspects. First, a robust, reliable, and flexible high-resolution 3D chromosome and genome structure reconstruction algorithm will be developed. This algorithm will use graph convolutional neural networks (GCNNs) as the core method for spatial structure reconstruction. Second, it will develop a novel noninstance-based approach for 3D structure reconstruction capable of high-resolution 3D genome structure model prediction using a generalization approach, where a trained model can be used to reconstruct multiple chromosomes or used for prediction across resolutions. The proposed noninstance-based approach for 3D structure utilizes a node embedding algorithm for the graph node feature representation corresponding to each chromosomal locus. These features are trained with a GCNN to generate predictions for chromosome and genome 3D structure coordinates corresponding to each chromosomal locus. Overall, this project will investigate the GCNN complexity and model depth questions to provide a new approach for chromosome and genome 3D structure reconstruction at a high resolution. The successful implementation of this project will give a unique insight into the 3D organization of chromosomes and genomes and motivate the future development of noninstance-based methods for chromosome 3D structure prediction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
来自不同个体和细胞类型、多个细胞、单细胞或亚细胞定位的数据量和分辨率的增加,因此增加了这些数据集的复杂性。这种增加意味着我们需要更复杂和自动化的方法来从这些数据集中推断模式和结构。细胞的三维 (3D) 染色体和基因组组织结构是我们数据丰富的社会中可推断的重要结构之一。重建基因组的 3D 组织是一项复杂且具有挑战性的任务。然而,有必要了解许多细胞活动,例如基因表达、基因稳定性和调控。为了提高对细胞内染色体组织的理解,开发了基于染色体构象捕获技术的基因组技术,特别是 Hi-C。这一发展极大地改善了细胞研究,并导致多年来多种 3D 染色体结构重建方法的发展。尽管已经提出了许多 3D 染色体结构重建方法,但缺乏对高分辨率(= 5kb)染色体和基因组结构架构的详细了解。该项目旨在开发一种先进且可扩展的算法,用于根据 Hi-C 数据进行高分辨率 3D 基因组重建,该算法提供足够的细节来解释生物活动,例如精细尺度的基因间相互作用。该项目将开发为开源工具和软件。此外,该项目的多学科性质提供了一种培训机制,并为本科生和研究生级别的学生提供教学和研究方面的实践学习和指导机会。具体来说,该项目的最终目标是发展计算和机器学习基于 的框架,通过高分辨率 (=5kb) 3D 结构重建来阐明基因组内的分层组织及其功能之间的相互作用。该项目预计将开发算法和计算工具,在以下方面推进3D基因组组织研究。首先,将开发稳健、可靠且灵活的高分辨率3D染色体和基因组结构重建算法。该算法将使用图卷积神经网络(GCNN)作为空间结构重建的核心方法。其次,它将开发一种新颖的基于非实例的 3D 结构重建方法,能够使用泛化方法进行高分辨率 3D 基因组结构模型预测,其中经过训练的模型可用于重建多个染色体或用于跨分辨率的预测。所提出的基于非实例的 3D 结构方法利用节点嵌入算法来表示与每个染色体位点相对应的图节点特征。这些特征通过 GCNN 进行训练,以生成与每个染色体位点相对应的染色体和基因组 3D 结构坐标的预测。总体而言,该项目将研究 GCNN 复杂性和模型深度问题,为高分辨率染色体和基因组 3D 结构重建提供新方法。该项目的成功实施将为染色体和基因组的3D组织提供独特的见解,并激励未来基于非实例的染色体3D结构预测方法的发展。该奖项反映了NSF的法定使命,经评估认为值得支持利用基金会的智力优势和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
HiC-GNN: A generalizable model for 3D chromosome reconstruction using graph convolutional neural networks
HiC-GNN:使用图卷积神经网络进行 3D 染色体重建的通用模型
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oluwatosin Oluwadare其他文献

Hierarchical Reconstruction of High-Resolution 3D Models of Large Chromosomes
大染色体高分辨率 3D 模型的分层重建
  • DOI:
    10.1038/s41598-019-41369-w
  • 发表时间:
    2019-03-21
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Tuan Trieu;Oluwatosin Oluwadare;Jianlin Cheng
  • 通讯作者:
    Jianlin Cheng
EnsembleSplice: Ensemble Deep Learning for Splice Site Prediction
EnsembleSplice:用于拼接位点预测的集成深度学习
  • DOI:
    10.3390/genes15040404
  • 发表时间:
    2024-03-26
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Trevor Martin;Oluwatosin Oluwadare
  • 通讯作者:
    Oluwatosin Oluwadare
Hierarchical Reconstruction of High-Resolution 3D Models of Human Chromosomes
人类染色体高分辨率 3D 模型的分层重建
  • DOI:
    10.1101/415810
  • 发表时间:
    2018-09-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tuan Trieu;Oluwatosin Oluwadare;Jianlin Cheng
  • 通讯作者:
    Jianlin Cheng
An Overview of Methods for Reconstructing 3-D Chromosome and Genome Structures from Hi-C Data
从 Hi-C 数据重建 3D 染色体和基因组结构的方法概述
  • DOI:
    10.1186/s12575-019-0094-0
  • 发表时间:
    2019-04-24
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Oluwatosin Oluwadare;M. Highsmith;Jianlin Cheng
  • 通讯作者:
    Jianlin Cheng
HiCARN: Super Enhancement of Hi-C Contact Maps
HiCARN:Hi-C联系图的超级增强
  • DOI:
    10.12989/sss.2011.7.2.133
  • 发表时间:
    2011-02-17
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Parker Hicks;Oluwatosin Oluwadare
  • 通讯作者:
    Oluwatosin Oluwadare

Oluwatosin Oluwadare的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

BRD9调控染色质重塑复合体SWI/SNF功能在三阴性乳腺癌发生发展中的作用机制研究
  • 批准号:
    32370651
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
发展型偏微分方程的三尺度奇异极限
  • 批准号:
    12371229
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于SARS-CoV-2的RBD重组蛋白调控肿瘤免疫微环境抑制三阴性乳腺癌发展的机制研究
  • 批准号:
    82303365
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
发展高效一步酶法策略研究三阴性乳腺癌潜在粘蛋白寡糖修饰的药物靶点
  • 批准号:
    22307127
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
染色体10p14非编码区中形成的一个特异性染色体三维结构在乳腺癌发生发展中的机制研究
  • 批准号:
    82372730
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Development of efficient vibration analysis and control method for automobile structures
汽车结构高效振动分析与控制方法开发
  • 批准号:
    22KJ2418
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Spacer acquisition during the type III-A CRISPR-Cas immune response
III-A 型 CRISPR-Cas 免疫反应期间间隔区的获取
  • 批准号:
    10638980
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
Mucosal immunity to sapovirus in early childhood
幼儿期对沙波病毒的粘膜免疫
  • 批准号:
    10677051
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
Exploiting the Metabolic Dependencies of Pediatric AML
利用儿科 AML 的代谢依赖性
  • 批准号:
    10664637
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
Mechanisms of cancer immunotherapy-associated thrombosis
癌症免疫治疗相关血栓形成的机制
  • 批准号:
    10667046
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了