Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform

协作研究:在 NIMBLE 分层统计建模平台中启用混合方法

基本信息

  • 批准号:
    2152860
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

This project will enable researchers in many fields of science to harness advanced computer algorithms to analyze complex data sets. In many fields, researchers seek to determine what hypotheses are supported by data collected in complex study designs. Data may be complex because they are collected in many locations, at many points in time, from related sampling units, under different sampling conditions, with different sample sizes, and/or with imperfect measurements. Such complexities arise in research fields such as biology, astronomy, education, environmental science, political science, and psychology, among others. When analyzing complex data, it can be difficult for researchers to determine which potential patterns are real and which are spurious. To solve this problem, researchers utilize computer algorithms to thoroughly explore all possible underlying relationships among variables that might explain the observed data. Such algorithms can be slow, costly, and difficult to create, so it is important to make them faster and easier for researchers to use. The investigators of this project have previously created a software package called NIMBLE (Numerical Inference for statistical Models using Bayesian and Likelihood Estimation) for this purpose. NIMBLE has been successfully used for many complex data analysis problems. Compared to other relevant software, NIMBLE enables researchers to use a wider range of algorithms and to customize algorithms to each research problem. This has allowed much faster performance in some cases, which in turn allows more comprehensive analysis of complex data. In the current project, the investigators will extend NIMBLE’s capabilities. They will make it possible to use some kind of accurate mathematical approximations for statistical calculations in combination with existing algorithms, which in turn will allow researchers to create new kinds of hybrid algorithms for data analysis. They will also make it possible to use certain kinds of very efficient calculations in some problems, which will greatly improve performance. The investigators will also provide support and training to users of the software as well as creating educational modules to help the next generation of undergraduate and graduate students learn to use these methods.NIMBLE is unique among hierarchical statistical modeling software because it combines a language for statistical models, a language for model-generic algorithms, and a compiler to generate and use C++ source code for models and algorithms. In the current project, NIMBLE will be extended to support hybrid methods by enabling algorithms to be nested within models. This will allow methods such as sparse grid quadrature to integrate over one set of model dimensions to achieve the calculations needed by another algorithm such as Markov chain Monte Carlo. In turn, this capability will allow composition of methods such as Laplace approximation and methods that use it. This project will also extend NIMBLE’s algorithm language to support sparse matrix algebra methods, allowing this efficient approach to be used by algorithm developers to enhance computational efficiency. Together, the advances in this project will enhance statistical research by enabling NIMBLE to serve as a hub for composition of models and methods, whereby a data analyst can create one statistical model and use many different methods with it. Finally, this project will include training and support for new and existing users.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将使许多科学领域的研究人员能够利用先进的计算机算法来分析复杂的数据集。在许多领域,研究人员试图确定复杂研究设计中收集的数据支持哪些假设。数据可能很复杂,因为它们是在复杂的研究设计中收集的。在生物学、天文学、教育、环境科学、政治学等研究领域中,在许多地点、在许多时间点、在不同的采样条件、不同的样本量和/或不完善的测量下,来自相关的采样单元。 、心理学等,在分析复杂数据时,它可以。研究人员很难确定哪些潜在模式是真实的,哪些是虚假的。为了解决这个问题,研究人员利用计算机算法来彻底探索可能解释观察到的数据的变量之间的所有可能的潜在关系。创建起来很困难,因此让研究人员更快、更容易地使用它们非常重要。为此,NIMBLE 之前创建了一个名为 NIMBLE(使用贝叶斯和似然估计的统计模型的数值推理)的软件包。已成功与其他相关软件相比,NIMBLE 使研究人员能够使用更广泛的算法并针对每个研究问题定制算法,这在某些情况下实现了更快的性能,从而可以进行更全面的分析。在当前的项目中,研究人员将扩展 NIMBLE 的功能,他们将能够结合现有算法使用某些精确的数学近似进行统计计算,这反过来又将使研究人员能够创建新型混合数据。他们将进行数据分析。还可以在某些问题中使用某些类型的非常有效的计算,这将大大提高性能,研究人员还将为软件用户提供支持和培训,并创建教育模块来帮助下一代本科生和研究生。 NIMBLE 在分层统计建模软件中是独一无二的,因为它结合了统计模型语言、模型通用算法语言以及当前用于生成和使用模型和算法的 C++ 源代码的编译器。项目中,NIMBLE 将扩展以支持混合方法通过使算法能够嵌套在模型中,这将允许诸如稀疏网格求积之类的方法在一组模型维度上进行集成,以实现另一种算法(如马尔可夫链蒙特卡罗)所需的计算。该项目还将扩展 NIMBLE 的算法语言以支持稀疏矩阵代数方法,从而允许高效的算法开发人员使用该方法来提高计算效率。该项目将通过使 NIMBLE 成为模型和方法组合的中心来加强统计研究,数据分析师可以创建一个统计模型并使用许多不同的方法。最后,该项目将包括对新的和现有的培训和支持。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Perry de Valpine其他文献

Threats to the persistence of sugar pine (Pinus lambertiana) in the western USA
美国西部糖松(Pinus Lambertiana)持续存在的威胁
  • DOI:
    10.1016/j.foreco.2023.121659
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Daniel E. Foster;Scott S. Stephens;Perry de Valpine;J. Battles
  • 通讯作者:
    J. Battles

Perry de Valpine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Perry de Valpine', 18)}}的其他基金

Expanding the Computational Statistics Toolbox for General Hierarchical Models
扩展通用分层模型的计算统计工具箱
  • 批准号:
    1622444
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
SI2-SSI: Integrating the NIMBLE Statistical Algorithm Platform with Advanced Computational Tools and Analysis Workflows
SI2-SSI:将 NIMBLE 统计算法平台与高级计算工具和分析工作流程集成
  • 批准号:
    1550488
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ABI Development: An extensible software platform for integrating multiple sources of data and uncertainty using hierarchical statistical models
ABI 开发:一个可扩展的软件平台,用于使用分层统计模型集成多个数据源和不确定性
  • 批准号:
    1147230
  • 财政年份:
    2012
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
More realistic statistical models for stage-structured time-series data
针对阶段结构时间序列数据的更真实的统计模型
  • 批准号:
    1021553
  • 财政年份:
    2010
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向开放域对话系统信息获取的准确性研究
  • 批准号:
    62376067
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: NSF-JST: Enabling Human-Centered Digital Twins for Community Resilience
合作研究:CPS:NSF-JST:实现以人为本的数字孪生,提高社区复原力
  • 批准号:
    2420847
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332468
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了