CAS- Climate: CDS&E: Facilitating Sustainable and Fair Transformation of GSI through AI

CAS-气候:CDS

基本信息

  • 批准号:
    2152834
  • 负责人:
  • 金额:
    $ 49.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-15 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

As climate change exacerbates environmental challenges associated with urban growth, green stormwater infrastructure (GSI) is a prevalent stormwater mitigation strategy to provide resilience and mitigate the impacts of development on flooding. In parallel, fully sustainable GSI systems must confront the challenges of historically unequitable distribution of infrastructure. The current data revolution has reached municipal stormwater programs; however, these programs are limited by a lack of knowledge of GSI life-cycle dynamics, high performance and emerging computational tools, and how to integrate new science into design and planning decisions. There is a scientific gap in the space formed among GSI design, performance function, and planning decisions that requires bridging hydrologic science, urban planning, and data analytics. This project leverages innovations in artificial intelligence (AI), advancements in the empirical and theoretical understanding of urban hydrologic science, and social data to produce a new model of GSI dynamics that considers social and environmental equity issues. This model will flip the paradigm of infrastructure planning and put the impact on society and the environment on par with engineering solutions to flooding. The model will be made available for use by public and private practitioners to plan, develop, and manage more sustainable and equitable GSI, and by researchers to deepen convergent knowledge of the complex social issues associated with urban flooding. The current state of GSI research is ripe for the application of AI techniques to advance GSI knowledge to discern key parameters, optimize GSI design and development, and enable future performance forecasts in a changing environment. For this project, civil engineers, computer scientists, and geographers are joining together to produce a new platform that uses AI in a dynamic environment with multiple data modalities, ranging from their spatial and temporal characteristics to data types. The research framework acknowledges the wider implications of GSI and its high interdependency and connection to the surrounding community and aims to improve social justice of GSI design through an equity-aware AI model. This project will use a large GSI monitoring relational database (housed at Villanova University) by combining GSI performance data and city-wide open data and applying machine learning methods to develop predictive models applicable across the US. This work targets advancing understanding of GSI dynamics by forecasting the performance of GSIs for a given array of conditions and constraints in urban settings to equitably maximize GSI community benefits. The project will support a diverse faculty team and engage students, urban communities, and industry and academic colleagues by: (1) creating state-of- the-art research and mentoring opportunities for graduate and undergraduate students from underrepresented backgrounds, (2) developing and delivering GSI learning modules for practitioners, and (3) integrating and promoting issues of equity and sustainability within urban stormwater management.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着气候变化加剧与城市发展相关的环境挑战,绿色雨水基础设施(GSI)是一种流行的雨水缓解策略,可提供抵御能力并减轻发展对洪水的影响。与此同时,完全可持续的 GSI 系统必须面对历史上基础设施分配不公平的挑战。当前的数据革命已经影响到市政雨水计划;然而,这些项目由于缺乏对 GSI 生命周期动态、高性能和新兴计算工具以及如何将新科学融入设计和规划决策的了解而受到限制。 GSI 设计、性能功能和规划决策之间存在科学差距,需要将水文科学、城市规划和数据分析联系起来。该项目利用人工智能 (AI) 创新、城市水文科学实证和理论理解的进步以及社会数据,产生考虑社会和环境公平问题的 GSI 动态新模型。该模型将颠覆基础设施规划的范式,将对社会和环境的影响与洪水工程解决方案相媲美。该模型将供公共和私人从业者使用,以规划、开发和管理更可持续和公平的 GSI,并供研究人员使用,以加深对与城市洪水相关的复杂社会问题的聚合知识。 GSI 研究的现状已经成熟,可以应用人工智能技术来推进 GSI 知识,以识别关键参数、优化 GSI 设计和开发,并在不断变化的环境中实现未来的性能预测。在这个项目中,土木工程师、计算机科学家和地理学家共同开发了一个新平台,该平台在动态环境中使用人工智能,具有多种数据模式,从空间和时间特征到数据类型。该研究框架承认 GSI 的更广泛影响及其与周围社区的高度相互依赖性和联系,旨在通过具有公平意识的人工智能模型改善 GSI 设计的社会正义。该项目将使用大型 GSI 监控关系数据库(位于维拉诺瓦大学),结合 GSI 性能数据和全市开放数据,并应用机器学习方法来开发适用于全美国的预测模型。这项工作的目标是通过预测 GSI 在城市环境中给定条件和约束条件下的表现来增进对 GSI 动态的理解,以公平地最大化 GSI 社区利益。该项目将支持多元化的教师团队,并通过以下方式吸引学生、城市社区、行业和学术同事:(1) 为来自弱势背景的研究生和本科生创造最先进的研究和指导机会,(2) 发展并为从业者提供 GSI 学习模块,以及 (3) 在城市雨水管理中整合和促进公平和可持续发展问题。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Virginia Smith其他文献

Everybody Prune Now: Structured Pruning of LLMs with only Forward Passes
现在每个人都修剪:仅使用前向传播的法学硕士结构化修剪
  • DOI:
    10.48550/arxiv.2402.05406
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Dery;Steven Kolawole;Jean;Virginia Smith;Graham Neubig;Ameet Talwalkar
  • 通讯作者:
    Ameet Talwalkar
Grass: Compute Efficient Low-Memory LLM Training with Structured Sparse Gradients
Grass:使用结构化稀疏梯度计算高效的低内存 LLM 训练
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aashiq Muhamed;Oscar Li;David Woodruff;Mona Diab;Virginia Smith
  • 通讯作者:
    Virginia Smith
Conjugated polymers with regularly spaced m‐phenylene units and post‐polymerization modification to yield stimuli‐responsive materials
具有规则间隔的间亚苯基单元的共轭聚合物和聚合后修饰以产生刺激响应材料
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ashley A. Buelt;C. A. Conrad;William D. Mackay;M. Shehata;Virginia Smith;Rhett C. Smith
  • 通讯作者:
    Rhett C. Smith
Is Support Set Diversity Necessary for Meta-Learning?
支持集多样性对于元学习是必要的吗?
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amrith Rajagopal Setlur;Oscar Li;Virginia Smith
  • 通讯作者:
    Virginia Smith
Private Adaptive Optimization with Side Information
带有辅助信息的私有自适应优化
  • DOI:
  • 发表时间:
    2022-02-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tian Li;M. Zaheer;Sashank J. Reddi;Virginia Smith
  • 通讯作者:
    Virginia Smith

Virginia Smith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Virginia Smith', 18)}}的其他基金

Equipment: MRI: Track 2 Acquisition of a Hydraulic and Sediment Recirculation Flume to Advance Fundamental Research in Urban Stormwater and Fluvial Processes
设备: MRI:轨道 2 获取水力和沉积物再循环水槽,以推进城市雨水和河流过程的基础研究
  • 批准号:
    2320356
  • 财政年份:
    2023
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
Planning: SCC-PG: Smart, Sustainable, and Equitable Green Stormwater Systems in Urban Communities
规划:SCC-PG:城市社区智能、可持续和公平的绿色雨水系统
  • 批准号:
    2228035
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
Planning: SCC-PG: Smart, Sustainable, and Equitable Green Stormwater Systems in Urban Communities
规划:SCC-PG:城市社区智能、可持续和公平的绿色雨水系统
  • 批准号:
    2228035
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
CAREER: Foundations of Federated Multi-Task Learning
职业:联合多任务学习的基础
  • 批准号:
    2145670
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: An Inter-disciplinary Approach to Constraining Paleo-geomorphic Responses to the Eocene-Oligocene Hothouse to Icehouse Transition
合作研究:限制始新世-渐新世温室向冰室转变的古地貌响应的跨学科方法
  • 批准号:
    1844180
  • 财政年份:
    2019
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant

相似国自然基金

极端气候条件下多能源互补系统设计优化的建模方法研究
  • 批准号:
    52306027
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
气候变暖背景下渤海低氧对陆源营养盐输入的非线性响应研究
  • 批准号:
    42376199
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
气候变化影响银行风险承担的理论机制与宏观经济后果研究
  • 批准号:
    72303134
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于非线性诊断归因的短期气候预测方法研究
  • 批准号:
    42375056
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
极端气候变化对阿尔泰山西伯利亚落叶松衰退影响机制及死亡风险研究
  • 批准号:
    42377449
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目

相似海外基金

Global Centers Track 1: Understanding Climate Change Impacts on Transboundary Waters
全球中心轨道 1:了解气候变化对跨界水域的影响
  • 批准号:
    2330317
  • 财政年份:
    2024
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
Species interactions and ecological function under biodiversity loss and climate variability
生物多样性丧失和气候变化下的物种相互作用和生态功能
  • 批准号:
    2330772
  • 财政年份:
    2024
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
ART: Translating Research to Practice to Create Climate-Ready Communities Across Virginia
ART:将研究转化为实践,在弗吉尼亚州创建气候就绪型社区
  • 批准号:
    2331271
  • 财政年份:
    2024
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Cooperative Agreement
CAREER: Enhancing Hurricane Resistance of Building Exteriors (Envelopes) under Urban Development in a Changing Climate
职业:在气候变化的城市发展中增强建筑外墙(围护结构)的抗飓风能力
  • 批准号:
    2340214
  • 财政年份:
    2024
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
Travel Grant: Workshop on Impacts of Unusual Weather Events and Climate Anomalies on a Tropical Rainforest
旅行补助金:异常天气事件和气候异常对热带雨林的影响研讨会
  • 批准号:
    2340946
  • 财政年份:
    2024
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了