Rheology for near real time forecasting of lava flows
用于熔岩流近实时预测的流变学
基本信息
- 批准号:2223098
- 负责人:
- 金额:$ 41.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Effective civil protection during effusive volcanic eruptions relies on accurate assessment of three main questions: 1. Where is the eruptive vent? 2. What areas will the lava flows affect? and 3. How fast will lava reach certain areas? Forecasting methods for lava flow paths and velocities require a detailed understanding of the lava’s flow properties (i.e. how viscous it is), the slope of the ground that the lava is flowing on and how much lava is erupted over a certain time interval. As lava flows down a volcano, it cools, crystallizes, and forms and/or loses bubbles, all of which affect how fast and how far lava may flow. An incomplete understanding of how the lava’s flow properties change makes accurate lava flow forecasting, and with that, hazard mitigation ahead of effusive eruptions, civil protection, and management of ongoing eruptive events, difficult. This project is motivated by 1) an incomplete understanding of lava flow properties, 2) a lack of integration of accurate flow properties in lava flow models and 3) the need for shorter response times between eruption onset and availability of lava flow-path forecasts. The project will tackle these challenges using the two most hazardous effusive volcanoes in the world, Nyiragongo and Nyamulagira as type localities. As an example, the 2021 eruption of Nyiragongo claimed over 30 lives, left 20,000 homeless, destroyed 3,500 houses, 12 schools, and 3 hospitals – a powerful expression of the impact lava flows can have on human lives. The core objectives are to 1) reconstruct the lava’s flow properties from natural samples 2) measure the lava’s viscosity at conditions relevant to its emplacement, and 3) integrate these data into a framework of satellite informed lava forecasting models. This may enable the development of a satellite-data-driven near-real time protocol for rapid and accurate forecasting of lava flow paths, which can then be applied during effusive eruptions to help guide decision making in civil protection efforts. Project results will also be incorporated into the SUNY Buffalo EarthEd program, providing content for K12 educators serving underrepresented communities, promoting science literacy. The project will support a graduate student at SUNY Buffalo and involves international collaborations (USA, Italy, France, DR Congo) in academia, development aid, and at volcano observatories.Lava rheology varies as a function of temperature, melt composition, crystal, and bubble content as well as strain rate. From eruption to flow cessation, basaltic lavas traverse a range of up to 10 orders of magnitude in their effective viscosity. The resulting non-linear changes in the lava’s transport behaviour determine how it accommodates deformation during emplacement and how fast and how far a lava can flow. The core objectives are to 1) reconstruct the lava’s rheology from natural samples 2) map the lava’s rheology over conditions relevant to their emplacement, and 3) integrate these data into a framework of satellite informed lava emplacement models. Using careful experimental characterization of the lava enables adaptation of a satellite-data-driven near-real time protocol to develop a tool for rapid and accurate forecasting of lava flow emplacement paths. The project will integrate field measurements, textural analysis, and targeted high temperature rheology experiments to generate the first complete rheological flow law for a basaltic lava that is derived from measurements at conditions relevant to lava emplacement and validated with field constraints. Using this flow law, the project will optimize a lava flow emplacement model, and integrate it into an existing near real time satellite monitoring system. This will create a highly adaptable tool for predicting lava flow paths and advance rates that is rooted in and optimized for the core physical property – lava rheology. The project sets out to: 1) Perform detailed petrographic analyses of natural samples and collect and evaluate field data of lava flow geometries 2) Use these in concert with viscosity measurements in controlled atmospheres to reconstruct the lava’s rheology during emplacement. This includes generating critical new data at reduced conditions, which are extremely scarce. 3) Employ the derived data to initialize and calibrate a deterministic lava flow model. This tool may enable near real time lava emplacement forecasting during future eruptions as well as forensic investigations of previous eruptions. The selected type localities enable testing both cooling- and volume-limited lava emplacement scenarios.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
有效的火山喷发期间有效的民事保护依赖于对三个主要问题的准确评估:1。爆发在哪里? 2。熔岩流将影响什么区域?和3。熔岩到达某些区域的速度有多快?熔岩流路径和速度的预测方法需要详细了解熔岩的流量特性(即它的粘性),熔岩正在流动的地面的斜率以及在一定时间间隔内爆发了多少熔岩。当熔岩流下火山时,它会冷却,结晶,形成和/或失去气泡,所有这些都会影响熔岩可能流动的速度和程度。对熔岩流量的变化的不完全理解使熔岩流的预测准确,因此,在爆发,民事保护以及正在进行的爆发事件的管理之前,危害缓解危险。该项目是由1)对熔岩流量的不完全理解,2)缺乏熔岩流模型中准确的流量特性的整合,以及3)需要在喷发开始和熔岩流道预测的可用性之间较短的响应时间。该项目将使用世界上两座最危险的爆发火山(Nyiragongo和Nyamulagira)作为类型的地区来应对这些挑战。例如,Nyiragongo的2021年爆发夺走了30多次生命,剩下20,000人无家可归,被摧毁了3500座房屋,12所学校和3家医院 - 熔岩流对人类生活的强大表达。核心目标是1)从天然样品中重建熔岩的流量。项目结果还将纳入SUNY BUFFALO接地计划中,为K12教育者提供服务不足的社区的内容,从而促进科学素养。该项目将支持SUNY BUFFALO的一名研究生,并涉及学术界的国际合作(美国,意大利,法国,刚果博士),开发援助和火山观察家。Lava流变学范围作为温度,融化成分,水晶和气泡含量和应变率的函数。从喷发到流动停止,玄武岩熔岩在其有效粘度上遍布多达10个数量级的范围。熔岩的运输行为的非线性变化决定了其在安置过程中如何适应变形,以及熔岩可以流动的速度和多远。核心对象是1)从天然样品中重建熔岩的流变学2)绘制熔岩的流变学与其扩展相关的条件,以及3)将这些数据整合到卫星知情的熔岩安装模型的框架中。使用熔岩的仔细实验表征,可以适应卫星-DATA驱动的近时间协议,以开发一种工具,以快速准确地预测熔岩流动途径。该项目将整合现场测量,纹理分析和有针对性的高温流变学实验,以生成第一个完整的流变流量定律,用于玄武岩熔岩,该法在与熔岩增强的条件下从测量中得出,并通过现场约束验证。使用此流程定律,该项目将优化熔岩流程模型,并将其集成到现有的近实时卫星监视系统中。这将创建一种高度适应性的工具,用于预测熔岩流道和提前速率,该工具植根于核心物理特性 - 熔岩流变学。该项目规定:1)对天然样品进行详细的岩石学分析,并收集和评估熔岩流量几何形状的现场数据2)在受控大气中的粘度测量协同使用它们,以重建熔岩在安置期间的熔岩流变性。这包括在减少的条件下生成关键的新数据,这极为稀缺。 3)采用派生数据来初始化和校准确定性的熔岩流模型。该工具可能会在未来喷发期间实时实时熔岩预测,以及对先前喷发的武器调查。所选类型的地区可以测试冷却和量有限的熔岩安置方案。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,被认为是通过评估而被视为珍贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephan Kolzenburg其他文献
Stephan Kolzenburg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephan Kolzenburg', 18)}}的其他基金
RAPID: Deployment of a Field Rheometer Prototype
RAPID:现场流变仪原型的部署
- 批准号:
2241489 - 财政年份:2022
- 资助金额:
$ 41.06万 - 项目类别:
Standard Grant
相似国自然基金
CRISPR-Cas精准识别协同NEAR指数信号放大一体化生物传感体系构建用于胰腺癌多重基因突变检测方法研究
- 批准号:32371521
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
太阳风在靠近阿尔芬表面的特性研究
- 批准号:42274201
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
可编程CRISPR/Cas体系诱导NEAR多重扩增结合上转换荧光纳米探针用于病原体高灵敏可视化检测方法研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
建立鼻咽癌外泌体PLA-RPA检测新技术及在EBV抗体阳性人群中的筛查应用
- 批准号:81871711
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
基于NEAR放大及发射光叠加信号分析的高灵敏可视化双食源性病毒检测方法研究
- 批准号:31701683
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Design and Development of a Near Real-Time Community Crowdsourced Resilience Information System for Enhancing Community Resilience in the Face of Flooding and other Extreme Events
设计和开发近实时社区众包抗灾信息系统,以增强社区面对洪水和其他极端事件的抗灾能力
- 批准号:
2325631 - 财政年份:2023
- 资助金额:
$ 41.06万 - 项目类别:
Standard Grant
Development and validation of innovative, near real-time analytical tools to enable mitigation of contamination within cleanrooms of the UK spacecraft
开发和验证创新的近实时分析工具,以减轻英国航天器洁净室内的污染
- 批准号:
ST/X005356/1 - 财政年份:2023
- 资助金额:
$ 41.06万 - 项目类别:
Training Grant
Improving flexibility and performance of the Acute Care Enhanced Surveillance (ACES) System for public health surveillance: an ensemble of state-of-the-art machine learning and rule-based natural language processing methods
提高用于公共卫生监测的急性护理增强监测 (ACES) 系统的灵活性和性能:最先进的机器学习和基于规则的自然语言处理方法的集合
- 批准号:
468864 - 财政年份:2022
- 资助金额:
$ 41.06万 - 项目类别:
Operating Grants
Imaging Goggles for Fluorescence-Guided Surgery
用于荧光引导手术的成像护目镜
- 批准号:
10631237 - 财政年份:2022
- 资助金额:
$ 41.06万 - 项目类别:
Mobile Ecological Momentary Diet Assessment: A Low Burden, Ecologically-Valid Approach to Measuring Dietary Intake in Near-Real Time
移动生态瞬时饮食评估:一种低负担、生态有效的近实时测量膳食摄入量的方法
- 批准号:
10593785 - 财政年份:2022
- 资助金额:
$ 41.06万 - 项目类别: