Collaborative Research: FW-HTF-R: Embedding Preferences in Adaptable Artificial Intelligence Decision Support for Transplant Healthcare to Reduce Kidney Discard

合作研究:FW-HTF-R:在移植医疗保健的适应性人工智能决策支持中嵌入偏好,以减少肾脏废弃

基本信息

项目摘要

Transplantation provides patients suffering from end-stage kidney disease a better quality of life and long-term survival compared to chronic dialysis. However, approximately 20% of deceased donor kidneys are discarded and never transplanted. While some discards may be medically appropriate, others reflect missed opportunities. Even kidneys deemed less desirable may provide survival benefits to some patients. Organ Procurement Organizations (OPOs) have great difficulty finding transplant centers to accept less medically desirable (higher risk) kidneys. At their discretion, OPOs can use accelerated placement to bypass the priority list for “hard-to-place” kidneys. However, due to a lack of data-driven guidance, this mechanism is not systematically applied and likely underutilized. To enable transformative change, we will integrate Artificial Intelligence (AI) decision support into the kidney offer process for both demand at the transplant center and supply at the OPO. Key workers include OPO staff (organ procurement coordinators, operations directors, medical directors), transplant center staff (coordinators, physicians, surgeons), and transplant patients. This research is driven by a partnership between transplant and ethics experts at Saint Louis University Hospital, behavioral scientists at the United Network for Organ Sharing (UNOS), and experts in AI and human factors from Missouri University of Science & Technology.Building on a FW-HTF planning grant, this project is developing an AI decision support system for (a) transplant centers to accept/deny high-risk kidney offers and (b) OPOs to identify hard-to-place kidneys sooner. This research will (1) measure worker preferences to customize the support system’s operation and interface, (2) aggregate fairness preferences as defined by diverse stakeholders to improve fairness in the model output, (3) evaluate the effect of embedding uncertainty and explainability into the interface, (4) develop deep learning ensemble models that can adapt over time while being explainable, and (5) conduct randomized control trials using UNOS Lab’s SimUNet, a realistic kidney offer simulation platform for behavioral experiments, to estimate the impact on kidney discard. Within the deep learning model, this project will impose trade-offs to increase fairness without significantly reducing accuracy, enhance explainability by converting feature relevance into linguistic expressions, and integrate new data (such as customizing for worker preferences) through transfer learning as conditions change in kidney transplant practices. Ultimately, this research aims to reduce kidney discard for “hard-to-place” organs by at least 10%. In addition, this work will support critical advancements in ethics and training, issues that will be critical in overcoming system-level barriers to integrate AI into healthcare.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
与慢性透析相比,移植为患有末期肾脏疾病的患者具有更好的生活质量和长期生存。但是,大约20%的已故供体肾脏被丢弃,从未移植。虽然有些丢弃在医学上可能是适当的,但有些则反映了错过的机会。即使是被认为较少理想的肾脏也可能为某些患者提供生存益处。器官采购组织(OPOS)很难找到移植中心,以接受医学上理想的(较高的风险)肾脏。 OPO可酌情决定使用加速位置来绕过“难以位置”肾脏的优先级列表。但是,由于缺乏数据驱动的指导,这种机制并未系统地应用和可能未被充分利用。为了实现变革性的变化,我们将将人工智能(AI)的决策支持整合到肾脏的要约过程中,以满足移植中心的需求和OPO的供应。主要工作人员包括OPO员工(器官采购协调员,运营主管,医疗董事),移植中心工作人员(协调员,医师,外科医生)和移植患者。这项研究是由圣路易斯大学医院的移植和道德专家之间的合作伙伴关系驱动的早日难以释放肾脏。这项研究将(1)衡量工人偏好自定义支持系统的操作和界面,(2)汇总的公平性偏好是由潜水员利益相关者定义的,以提高模型输出中的公平性,((3)评估嵌入不确定性和解释性的效果行为实验的仿真平台,以估计对肾脏丢弃的影响。在深度学习模型中,该项目将实施权衡取舍,以提高公平性而不显着降低准确性,通过将功能相关性转换为语言表达方式,并通过转移学习来综合新数据(例如定制工人偏好),因为条件变化肾脏移植实践。最终,这项研究旨在将“难以放置”器官的肾脏丢弃至少10%。此外,这项工作将支持伦理和培训方面的重要进步,这对于克服AI纳入医疗保健的系统级障碍至关重要的问题。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛影响标准的评估来评估的支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Complex System Methodology for Meta Architecture Optimization of the Kidney Transplant System of Systems
肾移植系统元架构优化的复杂系统方法
A Use Case for Developing Meta Architectures with Artificial Intelligence and Agent Based Simulation in the Kidney Transplant Complex System of Systems
在肾移植复杂系统中使用人工智能和基于代理的模拟开发元架构的用例
Identify Hard-to-Place Kidneys for Early Engagement in Accelerated Placement With a Deep Learning Optimization Approach
通过深度学习优化方法识别难以放置的肾脏,以便尽早参与加速放置
  • DOI:
    10.1016/j.transproceed.2022.12.005
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Ashiku, Lirim;Dagli, Cihan
  • 通讯作者:
    Dagli, Cihan
AI-Enabled Digital Support to Increase Placement of Hard-to-Place Deceased Donor Kidneys
支持人工智能的数字支持可增加难以放置的已故捐献肾脏的放置
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Threlkeld, R.;Ashiku, L.;Dagli, C.;Dzieran, R.;Canfield, C.;Lentine, K.;Schnitzler, M.;Marklin, G.;Rothweiler, R.;Speir, L.
  • 通讯作者:
    Speir, L.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Casey Canfield其他文献

Cost-reflective dynamic electricity pricing for prosumers
产消者的成本反映动态电价
  • DOI:
    10.1016/j.tej.2022.107075
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mahelet G. Fikru;Jeorge Atherton;Casey Canfield
  • 通讯作者:
    Casey Canfield
Role of greener default options on consumer preferences for renewable energy procurement
绿色默认选项对消费者可再生能源采购偏好的影响
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Ankit Agarwal;Casey Canfield;Mahelet G. Fikru
  • 通讯作者:
    Mahelet G. Fikru
Push them forward: Challenges in intergovernmental organizations' influence on rural broadband infrastructure expansion
  • DOI:
    10.1016/j.giq.2022.101752
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Javier Valentín-Sívico;Casey Canfield;Ona Egbue
  • 通讯作者:
    Ona Egbue
Show-Me Resilience: Assessing and Reconciling Rural Leaders’ Perceptions of Climate Resilience in Missouri
展示韧性:评估和调和密苏里州农村领导人对气候韧性的看法
  • DOI:
    10.1007/s00267-023-01836-7
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Zachary Miller;C. O'Brien;Casey Canfield;Lauren Sullivan
  • 通讯作者:
    Lauren Sullivan
Choosing both/and: Encouraging green energy purchases in community choice aggregation
  • DOI:
    10.1016/j.enpol.2023.113949
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mahelet G. Fikru;Casey Canfield
  • 通讯作者:
    Casey Canfield

Casey Canfield的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Casey Canfield', 18)}}的其他基金

FW-HTF-P: Teaming Transplant Professionals and Artificial Intelligence Tools to Reduce Kidney Discard
FW-HTF-P:联合移植专业人员和人工智能工具减少肾脏废弃
  • 批准号:
    2026324
  • 财政年份:
    2020
  • 资助金额:
    $ 180万
  • 项目类别:
    Standard Grant

相似国自然基金

基于DES/FW-H方法的共轴刚性旋翼气动噪声预测方法及机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于DES/FW-H方法的共轴刚性旋翼气动噪声预测方法及机理研究
  • 批准号:
    12102154
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
番茄果重基因FW9.1的图位克隆及与其它果重基因互作效应研究
  • 批准号:
    31872949
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
Fw2.2同源基因调控库尔勒香梨果实大小的分子机理研究
  • 批准号:
    31760561
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
番茄果实重量基因FW11.3控制细胞大小的分子机理研究
  • 批准号:
    31471889
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
  • 批准号:
    2326170
  • 财政年份:
    2023
  • 资助金额:
    $ 180万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
  • 批准号:
    2326160
  • 财政年份:
    2023
  • 资助金额:
    $ 180万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
  • 批准号:
    2326193
  • 财政年份:
    2023
  • 资助金额:
    $ 180万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Artificial Intelligence Technology for Future Music Performers
合作研究:FW-HTF-RM:未来音乐表演者的人工智能技术
  • 批准号:
    2326198
  • 财政年份:
    2023
  • 资助金额:
    $ 180万
  • 项目类别:
    Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
  • 批准号:
    2326407
  • 财政年份:
    2023
  • 资助金额:
    $ 180万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了