Collaborative Research: Single-molecule in vivo analysis of mechanosensitive channels in bacteria using force spectroscopy
合作研究:利用力谱对细菌中的机械敏感通道进行单分子体内分析
基本信息
- 批准号:2221771
- 负责人:
- 金额:$ 51.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The objective of this research project is to discover how the mechanical safety valves, so called “mechanosensitive channels”, embedded in the tough outer shells of bacteria function and how they help to protect bacteria against rupture due to excessive internal pressure during sudden changes in their environment. An understanding of this essential bacterial function could impact human health and the control of bacterial disease. Multiple drug resistance is an immense health threat. A detailed understanding of bacterial protective functions may lead to new pharmacological approaches to overcoming these protections. Furthermore, bacteria play crucial roles in commercial agriculture, environmental remediation, and alternative energy production. In all these situations, understanding of growth regulation and reactions to changing environmental conditions is critical. The work of this collaborative research program lies at the intersection of biology, experimental biophysics, and mechanical engineering, and graduate students and postdoctoral researchers in the team will be trained to work at this intersection. Undergraduate students at Duke and UCLA will also participate in this research project. Undergraduates from underrepresented minority groups will participate in summer research experiences at UCLA that focus on computational modeling. Middle and high school students from diverse backgrounds will participate in afterschool and camp experiences at Duke that introduce participants to state-of-the-art cell imaging technologies. Through the educational outreach, this work will increase and diversify the group of undergraduates interested in STEM-based careers, including those from community colleges and Minority Serving Institutions. Bacteria are enclosed by a complex multi-layered cell envelope that enables them to maintain a high internal turgor pressure of one or more atmospheres. When external osmolarity drops significantly, excessive turgor can cause cells to burst. To prevent this, mechano-sensitive channels (MSCs) embedded in the inner lipid membrane act as safety valves and release solutes to decrease turgor. It remains unknown if MSCs in the living cell open only when the lateral tension in the inner cell membrane increases, or if they also react to other mechanical stimuli transmitted through their complex mechanical microenvironments. It also remains unknown how biochemical regulation affects force transmission leading to channel gating. This project will utilize a new approach to observe the opening of single MSCs in live bacteria in response to mechanical compression, essentially between flat plates in an atomic force microscope (AFM). This method can precisely quantify turgor pressure and, at the same time, resolve cell volume changes as small as 0.01 femtoliters, produced by the gating of individual MSCs. The project will study gram-negative E. coli and gram-positive B. subtilis bacteria and compare the behavior of wildtype strains with strains expressing only specific MSCs. Experiments will be combined with analytical and numerical coarse-grained modeling to understand force transmission to MSCs through the complex cell wall structures, including the lipid membrane(s), the proteoglycan layer, and the periplasmic polyelectrolyte layer, with a focus on the role of cell wall defects. The new approach to in vivo characterization of MSCs will help to solve fundamental puzzles about MSC function in their native physiological environment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目的目的是发现,所谓的“机械敏感通道”的机械安全阀如何嵌入细菌功能的坚韧外壳中,以及它们如何帮助保护细菌在其环境中突然变化时由于内部压力过大。对这种基本细菌功能的理解可能会影响人类健康和细菌疾病的控制。多种耐药性是巨大的健康威胁。对细菌保护功能的详细理解可能会导致新的药物方法克服这些保护。此外,细菌在商业协议,环境修复和替代能源生产中起着至关重要的作用。在所有这些情况下,了解生长调节和对不断变化的环境条件的反应至关重要。这项合作研究计划的工作在于生物学,实验生物物理学和机械工程的交集以及团队中的研究生和博士后研究人员将接受培训,可以在此交叉路口工作。杜克大学和加州大学洛杉矶分校的本科生也将参加该研究项目。来自代表性不足的少数群体的本科生将参加加州大学洛杉矶分校的夏季研究经验,专注于计算建模。来自潜水员背景的中学生和高中生将参加杜克大学的课后和露营经验,向参与者介绍最先进的细胞成像技术。通过教育宣传,这项工作将增加并使对基于STEM的职业(包括社区学院和少数民族服务机构的职业)感兴趣的本科生多样化。细菌被一个复杂的多层细胞包膜包围,使它们能够保持一个或多个大气的高内部爆炸压力。当外部渗透压显着下降时,过量的turgor会导致细胞破裂。为了防止这种情况,嵌入脂质内部膜中的机械敏感通道(MSC)作为安全阀和释放溶剂可减少turgor。在内部细胞膜中的横向张力增加时,或者它们也对通过其复杂的机械微环境传播的其他机械刺激反应时,活细胞中的MSC是否仅开放。生化调节如何影响导致通道门控的力传递。该项目将利用一种新方法来观察活细菌中的单个MSC的开放,以应对机械压缩,这基本上是原子力显微镜(AFM)中的平板之间的开放。该方法可以准确地量化turgor压力,同时解决细胞体积的变化,而单个MSC的门控产生的0.01个女性变化。该项目将研究革兰氏阴性大肠杆菌和革兰氏阳性枯草芽孢杆菌细菌,并将野生型菌株的行为与仅表达特定MSC的菌株进行比较。实验将与分析和数值的粗粒化建模相结合,以通过复杂的细胞壁结构(包括脂质膜,蛋白聚糖层和周质多电解质层)来理解向MSC传播的力,侧重于细胞壁缺陷的作用。 MSC的体内特征的新方法将有助于解决有关MSC功能在其本土生理环境中的基本难题。该奖项反映了NSF的法定任务,并通过使用该基金会的知识分子和更广泛的影响来评估NSF的法定任务,并被认为是宝贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christoph Schmidt其他文献
Russische Geschichte 1547-1917
俄罗斯历史1547-1917
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Christoph Schmidt - 通讯作者:
Christoph Schmidt
Simulating feldspar luminescence phenomena using R
使用 R 模拟长石发光现象
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:3.6
- 作者:
V. Pagonis;Christoph Schmidt;S. Kreutzer - 通讯作者:
S. Kreutzer
New data on tributary terraces and a reappraisal of the incision history of the Jinshan Gorge, middle Yellow River
- DOI:
10.1016/j.geomorph.2024.109330 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Yuezhi Zhong;Vincenzo Picotti;Jianguo Xiong;Sean D. Willett;Christoph Schmidt;Georgina King - 通讯作者:
Georgina King
Clinical implications of incomplete C5 inhibition by Eculizumab illustrated by experimental and clinical data from 15 PNH patients
- DOI:
10.1016/j.molimm.2018.06.204 - 发表时间:
2018-10-01 - 期刊:
- 影响因子:
- 作者:
Markus Harder;Britta Höchsmann;Markus Anliker;Thomas Simmet;Hubert Schrezenmeier;Christoph Schmidt - 通讯作者:
Christoph Schmidt
Application of three airway devices during emergency medical training by health care providers—a manikin study
- DOI:
10.1016/j.ajem.2007.11.006 - 发表时间:
2008-09-01 - 期刊:
- 影响因子:
- 作者:
Benedikt Trabold;Christoph Schmidt;Barbara Schneider;Derya Akyol;Marc Gutsche - 通讯作者:
Marc Gutsche
Christoph Schmidt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christoph Schmidt', 18)}}的其他基金
Mechanosensitivity of Membrane-Actin Cortex Adhesion
膜-肌动蛋白皮层粘附的机械敏感性
- 批准号:
2310593 - 财政年份:2023
- 资助金额:
$ 51.27万 - 项目类别:
Standard Grant
Scanning Laser Force Microscope with Nanometer Resolution for Dynamic Imaging of Single Biomolecules Under Physiological Conditions
具有纳米分辨率的扫描激光力显微镜,用于生理条件下单个生物分子的动态成像
- 批准号:
9512699 - 财政年份:1995
- 资助金额:
$ 51.27万 - 项目类别:
Continuing Grant
相似国自然基金
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于SERS纳米标签和光子晶体的单细胞Western Blot定量分析技术研究
- 批准号:31900571
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
酵母RNase MRP的结构及催化机制研究
- 批准号:31900929
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
单细胞RNA和ATAC测序解析肌肉干细胞激活和增殖中的异质性研究
- 批准号:31900570
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
亚纳米单分子定位技术研究化学修饰对蛋白-膜相互作用的干预
- 批准号:91753104
- 批准年份:2017
- 资助金额:70.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 51.27万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 51.27万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 51.27万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 51.27万 - 项目类别:
Standard Grant
Collaborative Research: Robust and miniature laser with tailorable single-mode operation range
合作研究:具有可定制单模工作范围的坚固微型激光器
- 批准号:
2411394 - 财政年份:2024
- 资助金额:
$ 51.27万 - 项目类别:
Standard Grant