Collaborative Research: NSF-BSF: On-Chip High-Resolution Mid-Infrared Spectroscopy with a Single Tunable van der Waals Heterostructure Photodetector

合作研究:NSF-BSF:具有单个可调谐范德华异质结构光电探测器的片上高分辨率中红外光谱仪

基本信息

项目摘要

Spectrometers measure the spectral composition of light. Mid-infrared spectrometers, operational in 2-9 µm spectral range, can be used in many important applications such as gas sensing, thermal imaging, microbial detection, and surveillance. Traditional spectrometers are bulky, expensive, and usually consist of mechanically moving parts. Although significant progress has been made in the miniaturization of spectrometers, currently, most compact spectrometers still consist of an array of on-chip components to capture the different spectral components of the light, leading to a footprint much larger than the operational wavelength. Moreover, current research on developing compact spectrometers focuses on visible and near-infrared wavelength range, and the effort on developing integrated on-chip mid-infrared spectrometers is very limited despite their technical significance. In this project, mid-infrared spectrometers based on a single, on-chip, tunable sensor will be developed, leveraging van der Waals heterostructures and advanced mathematical algorithms. The proposed research involves investigations of the optical properties of emerging materials, device fabrication, and numerical analysis. Scientifically, this research will reveal the light-matter interaction properties in emerging van der Waals heterostructures. The results will lead to ultracompact, on-chip spectrometers in the critical, but less-explored, mid-infrared wavelength range. In this project, postdoctoral researchers, and graduate and undergraduate students will acquire knowledge in semiconductor device design and fabrication, thus contributing to the development of next-generation workforce for semiconductor industry. The outreach activities will improve the scientific understanding of the general public and encourage underrepresented groups to pursue careers in science, technology, engineering, and math. The goal of this project is to develop a highly compact, mid-infrared spectrometer based on a single, tunable van der Waals heterostructure photodetector. First, the team will investigate the tunable light-matter interactions in van der Waals heterostructures in the mid-infrared wavelength range both theoretically and experimentally, laying the foundation for the proposed program. Second, tunable van der Waals heterostructure photodetectors will be demonstrated and their widely tunable photoresponse matrices will be characterized under different biasing conditions. Finally, the team will develop algorithms and measurement schemes to demonstrate spectroscopy functions based on the known tunable photoresponse characteristics. The proposed program aims to develop new paradigms for mid-infrared spectroscopy. Previous on-chip spectrometers usually utilize multiple photodetection elements to detect different spectral components of the light, and the spectrum is reconstructed from measurements from these various elements. Once fabricated, these photodetection elements can no longer be modified, thus limiting the resolution and the operational wavelength range of these spectrometers. The proposed heterostructure spectrometer will build upon a novel tunable single-element photodetector scheme, and further leverage the promising physical properties of emerging van der Waals heterostructures to advance the frontiers of on-chip infrared spectroscopy. The proposed spectrometer overcomes the resolution limitations of traditional on-chip spectrometers and enables spectroscopic functionality within a footprint comparable to the wavelength of the operation. The project is highly interdisciplinary and leverages latest developments in material sciences, condensed matter physics, and electrical engineering to deliver much-anticipated, transformative applications with van der Waals materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光谱仪可测量光的光谱成分,可在 2-9 µm 光谱范围内使用,可用于许多重要应用,例如气体传感、热成像、微生物检测和监视。尽管光谱仪的小型化已经取得了重大进展,但目前大多数紧凑型光谱仪仍然由一系列片上组件组成。捕获光的不同光谱成分,导致占地面积远大于工作波长。此外,当前开发紧凑型光谱仪的研究主要集中在可见光和近红外波长范围,以及开发集成片上中红外光谱仪。尽管其技术意义重大,但光谱仪仍然非常有限。在该项目中,将利用范德华异质结构和先进的数学算法开发基于单个片上可调谐传感器的中红外光谱仪。拟议的研究涉及新兴材料的光学特性、器件制造和数值分析,从科学上讲,这项研究将揭示新兴范德华异质结构中的光与物质相互作用特性,其结果将导致超紧凑的片上光谱仪。在关键但较少探索的中红外波长范围内,博士后研究人员以及研究生和本科生将获得半导体器件设计和制造方面的知识,从而为下一代半导体劳动力的发展做出贡献。推广活动将提高公众对科学的理解,并鼓励代表性不足的群体从事科学、技术、工程和数学领域的职业。该项目的目标是开发一种基于中红外光谱仪的高度紧凑的中红外光谱仪。首先,该团队将从理论上和实验上研究中红外波长范围内范德华异质结构中的可调谐光与物质相互作用,为该探测器的研究奠定基础。其次,将演示可调谐范德华异质结构光电探测器,并在不同偏置条件下表征其广泛可调谐的光响应矩阵,最后,该团队将开发算法和测量方案,以基于已知的可调谐光响应特性来演示光谱功能。拟议的计划旨在开发中红外光谱的新范例。以前的片上光谱仪通常利用多个光电检测元件来检测中红外光谱的不同光谱成分。一旦制造完成,这些光电探测元件就不能再被修改,从而限制了这些光谱仪的分辨率和工作波长范围。元素光电探测器方案,并进一步利用新兴范德华异质结构的有前途的物理特性来推进片上红外光谱的前沿,所提出的光谱仪克服了传统的分辨率限制。该项目是高度跨学科的,利用材料科学、凝聚态物理和电气工程的最新发展,与 van der 一起提供备受期待的变革性应用。瓦尔斯材料。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashwin Ramasubramaniam其他文献

Tetrathiafulvalene-containing polymers for simultaneous non-covalent modification and electronic modulation of MoS2nanomaterials
  • DOI:
    10.1039/c6sc00305b
  • 发表时间:
    2016-04
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Ryan C. Selhorst;Egle Puodziukynaite;Jeffrey A. Dewey;Peijian Wang;Michael D. Barnes;Ashwin Ramasubramaniam;Todd Emrick
  • 通讯作者:
    Todd Emrick
From monolayer to thin films: engineered bandgap in CVD grown Bi2Se(3−x)Sxtopological insulator alloys
  • DOI:
    10.1039/d3tc03428c
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Michal Poplinger;Dimitris Kaltsas;Chen Stern;Pilkhaz Nanikashvili;Adi Levi;Rajesh K. Yadav;Sukanta Nandi;Yuxiao Wu;Avinash Patsha;Ariel Ismach;Ashwin Ramasubramaniam;Amaia Pesquera;Amaia Zurutuza;Ioanna Zergioti;Leonidas Tsetseris;Tomer Lewi;Doron Naveh
  • 通讯作者:
    Doron Naveh
Substrate-induced magnetism in epitaxial graphene buffer layers
外延石墨烯缓冲层中的基底感应磁性
  • DOI:
    10.1088/0957-4484/20/27/275705
  • 发表时间:
    2009-07-08
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Ashwin Ramasubramaniam;N. Medhekar;Vivek B. Shenoy
  • 通讯作者:
    Vivek B. Shenoy
Lateral transition-metal dichalcogenide heterostructures for high efficiency thermoelectric devices
  • DOI:
    10.1039/d2nr01609e
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Sathwik Bharadwaj;Ashwin Ramasubramaniam;L. R. Ram-Mohan
  • 通讯作者:
    L. R. Ram-Mohan
Tuning core–shell interactions in tungsten carbide–Pt nanoparticles for the hydrogen evolution reaction
  • DOI:
    10.1039/c8cp04113j
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Akash Jain;Ashwin Ramasubramaniam
  • 通讯作者:
    Ashwin Ramasubramaniam

Ashwin Ramasubramaniam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashwin Ramasubramaniam', 18)}}的其他基金

Collaborative Research: EAGER: Insights into the Hydrogen Evolution Reaction of Transition Metal Dichalcogenide Nanocrystals by In-situ Electron Paramagnetic Resonance Spectroscopy
合作研究:EAGER:通过原位电子顺磁共振波谱洞察过渡金属二硫族化物纳米晶体的析氢反应
  • 批准号:
    2302783
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
NSF-BSF: Controlling Phase Selectivity and Electrocatalytic Activity of Transition-Metal Dichalcogenide Overlayers in Core-Shell Nanoparticles for CO2 Reduction
NSF-BSF:控制核壳纳米颗粒中过渡金属二硫属化物覆盖层的相选择性和电催化活性,用于 CO2 还原
  • 批准号:
    1803614
  • 财政年份:
    2018
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
NSF-BSF: The Hard-Soft Interface -- Integrating 2D Semiconductors with Functional Polymers for Nanoscale Optoelectronics
NSF-BSF:硬-软接口——将二维半导体与功能聚合物集成以实现纳米级光电子学
  • 批准号:
    1808011
  • 财政年份:
    2018
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Continuing Grant

相似国自然基金

SYNJ1蛋白片段通过促进突触蛋白NSF聚集在帕金森病发生中的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
NSF蛋白亚硝基化修饰所介导的GluA2 containing-AMPA受体膜稳定性在卒中后抑郁中的作用及机制研究
  • 批准号:
    82071300
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
circ100783作为miR-34b分子海绵在铅暴露海马SNARE 复合体形成和突触囊泡释放中的机制研究
  • 批准号:
    81872577
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Mon1b 协同NSF调控早期内吞体膜融合的机制研究
  • 批准号:
    31671397
  • 批准年份:
    2016
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目
美国国家科学基金会组织与管理的法律制度研究
  • 批准号:
    L0822107
  • 批准年份:
    2008
  • 资助金额:
    9.5 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326621
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412550
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134747
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了