Collaborative Research: IMR: MM-1A: MapQ: Mapping Quality of Coverage in Mobile Broadband Networks using Latent Gaussian Process Models
合作研究:IMR:MM-1A:MapQ:使用潜在高斯过程模型映射移动宽带网络的覆盖质量
基本信息
- 批准号:2220387
- 负责人:
- 金额:$ 22.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
About 85% of people in the United States own a smartphone and use it to access the Internet on a regular basis, checking e-mail, using video conferencing applications, communicating with a doctor’s office, or searching for an answer to an urgent question. Sometimes these applications work well, and other times they do not. When they do not work well, the problem is often with the mobile broadband cellular network in the place and at the time of use. Unfortunately no one knows completely and accurately where high quality access exists, nor where regions of limited or no access are present. Accurate maps of coverage quality would enable resources to be directed to areas of greatest need, allow long term tracking of progress on the digital divide, and form a building block for new applications that can adapt to network quality. This project aims to create accurate and complete maps of cellular coverage quality by bringing together multiple measurement datasets and creating guidance for new measurements. This collaborative project brings together experts in statistical modeling, machine learning, and mobile networking from Georgia Institute of Technology and University of California, Santa Barbara. The project has two thrusts. The first focuses on creating mathematical models to predict cellular network quality using latent Gaussian processes in novel ways to combine measurement datasets collected with different methodologies. One set of models will consider how coverage quality varies over geographic space; the other will consider how it varies over time. The second thrust focuses on using the predicted coverage quality maps in two key ways, to use the models to create a Quality of Coverage metric that provides useful information to network users, and to use the models to guide in future measurement campaigns so that regions that are not well understood get prioritized. The United States Federal Government and other government and non-government organizations have allocated funding to broaden Internet access. However, because no one accurately knows where high quality access exists (or does not), it is difficult to target investments to communities of highest need. If successful, this work will be able to inform local, state, and federal governments about where investment should be made to ensure all Americans have access to high quality mobile Internet. As a result, residents of these communities will benefit from the educational, economic, and medical benefits that Internet access enables. https://sites.gatech.edu/mapping-broadband/ - this site will contain products of the project, including datasets, models, algorithms, and publications resulting from the work. The website and repository will be maintained for at least five years, from 2022 to 2027.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国约有85%的人拥有智能手机,并使用它定期访问互联网,使用视频会议申请,与医生的办公室进行通信或为紧急问题寻找答案。有时,这些应用程序运行良好,而其他时间则效果不佳。当它们运行不佳时,问题通常是在使用时和使用时的移动宽带蜂窝网络。不幸的是,没有人知道准确的覆盖质量地图将使资源能够指向最需要的领域,允许长期跟踪数字鸿沟的进度,并为可以适应网络质量的新应用程序形成一个构建块。该项目旨在通过汇总多个测量数据集并为新测量方面创建指导,从而创建准确而完整的蜂窝覆盖质量地图。这个合作项目汇集了佐治亚理工学院和加利福尼亚大学圣塔芭芭拉分校的统计建模,机器学习和移动网络专家。该项目有两个推力。第一个重点是创建数学模型,以新颖的方式使用潜在的高斯流程来预测细胞网络质量,以将收集的测量数据集与不同方法相结合。一组模型将考虑覆盖质量在地理空间上的质量变化。另一个将考虑它随着时间的变化。第二个推力重点是使用两种关键方式使用预测的覆盖质量图,以使用模型来创建覆盖质量指标,以向网络用户提供有用的信息,并使用模型来指导未来的测量活动,以便将不充分理解的区域优先考虑。美国联邦政府以及其他政府和非政府组织已分配资金来扩大互联网访问。但是,由于没有人准确知道在哪里存在(或不存在),因此很难将投资定位到最高需求的社区。如果成功的话,这项工作将能够为当地,州和联邦政府提供投资的何处,以确保所有美国人都可以使用高质量的移动互联网。结果,这些社区的居民将受益于互联网访问的教育,经济和医疗福利。 https://sites.gatech.edu/mapping-broadband/-本网站将包含该项目的产品,包括数据集,模型,算法和由工作产生的出版物。该网站和存储库将至少维护五年,从2022年到2027年。该奖项反映了NSF的法定任务,并认为使用基金会的知识分子优点和更广泛的影响评估标准,认为值得通过评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yao Xie其他文献
Co-transport of negatively charged nanoparticles in saturated porous media: Impacts of hydrophobicity and surface O-functional groups.
带负电纳米颗粒在饱和多孔介质中的共传输:疏水性和表面 O 官能团的影响。
- DOI:
10.1016/j.jhazmat.2020.124477 - 发表时间:
2020-11 - 期刊:
- 影响因子:13.6
- 作者:
Tianjiao Xia;Yixuan Lin;Shunli Li;Ni Yan;Yao Xie;Mengru He;Xuetao Guo;Lingyan Zhu - 通讯作者:
Lingyan Zhu
Conformal prediction set for time-series
时间序列的共形预测集
- DOI:
10.48550/arxiv.2206.07851 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Chen Xu;Yao Xie - 通讯作者:
Yao Xie
Conformal prediction for multi-dimensional time series by ellipsoidal sets
椭球集多维时间序列的共形预测
- DOI:
10.48550/arxiv.2403.03850 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Chen Xu;Hanyang Jiang;Yao Xie - 通讯作者:
Yao Xie
Poisson matrix completion
泊松矩阵完成
- DOI:
10.1109/isit.2015.7282774 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yang Cao;Yao Xie - 通讯作者:
Yao Xie
Deep Learning Fluorescence Imaging of Visible to NIR‐II Based on Modulated Multimode Emissions Lanthanide Nanocrystals
基于调制多模发射镧系元素纳米晶体的可见光到 NIR™II 的深度学习荧光成像
- DOI:
10.1002/adfm.202206802 - 发表时间:
2022-08 - 期刊:
- 影响因子:19
- 作者:
Yapai Song;Mengyang Lu;Yao Xie;Guotao Sun;Jiabo Chen;Hongxin Zhang;Xin Liu;Fan Zhang;Lining Sun - 通讯作者:
Lining Sun
Yao Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yao Xie', 18)}}的其他基金
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
- 批准号:
2220495 - 财政年份:2023
- 资助金额:
$ 22.02万 - 项目类别:
Standard Grant
Bridging Statistical Hypothesis Tests and Deep Learning for Reliability and Computational Efficiency
连接统计假设检验和深度学习以提高可靠性和计算效率
- 批准号:
2134037 - 财政年份:2022
- 资助金额:
$ 22.02万 - 项目类别:
Continuing Grant
Sequential Detection and Prediction for Solar Situation Awareness in Power Networks
电力网络中太阳态势感知的顺序检测和预测
- 批准号:
1938106 - 财政年份:2019
- 资助金额:
$ 22.02万 - 项目类别:
Standard Grant
ATD: Scanning Dynamic Spatial-Temporal Discrete Events for Threat Detection
ATD:扫描动态时空离散事件以进行威胁检测
- 批准号:
1830210 - 财政年份:2018
- 资助金额:
$ 22.02万 - 项目类别:
Continuing Grant
CAREER: Quick Detection for Streaming Data Over Dynamic Networks
职业:快速检测动态网络上的流数据
- 批准号:
1650913 - 财政年份:2017
- 资助金额:
$ 22.02万 - 项目类别:
Continuing Grant
CyberSEES: Type 2: Collaborative Research: Real-time Ambient Noise Seismic Imaging for Subsurface Sustainability
CyberSEES:类型 2:协作研究:用于地下可持续性的实时环境噪声地震成像
- 批准号:
1442635 - 财政年份:2015
- 资助金额:
$ 22.02万 - 项目类别:
Standard Grant
NSF Student Travel Grant for the 10th ACM International Conference on Underwater Networks and System (WUWNet'15)
NSF 学生旅费资助第十届 ACM 国际水下网络和系统会议 (WUWNet15)
- 批准号:
1551297 - 财政年份:2015
- 资助金额:
$ 22.02万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: IMR: MM-1C: Methods for Active Measurement of the Domain Name System
合作研究:IMR:MM-1C:域名系统主动测量方法
- 批准号:
2319367 - 财政年份:2023
- 资助金额:
$ 22.02万 - 项目类别:
Continuing Grant
Collaborative Research: IMR:MM-1B: Privacy in Internet Measurements Applied To WAN and Telematics
合作研究:IMR:MM-1B:应用于广域网和远程信息处理的互联网测量隐私
- 批准号:
2319409 - 财政年份:2023
- 资助金额:
$ 22.02万 - 项目类别:
Continuing Grant
Collaborative Research: IMR: MM-1B: Privacy-Preserving Data Sharing for Mobile Internet Measurement and Traffic Analytics
合作研究:IMR:MM-1B:移动互联网测量和流量分析的隐私保护数据共享
- 批准号:
2319486 - 财政年份:2023
- 资助金额:
$ 22.02万 - 项目类别:
Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319592 - 财政年份:2023
- 资助金额:
$ 22.02万 - 项目类别:
Continuing Grant
Collaborative Research: IMR: MM-1B: Privacy-Preserving Data Sharing for Mobile Internet Measurement and Traffic Analytics
合作研究:IMR:MM-1B:移动互联网测量和流量分析的隐私保护数据共享
- 批准号:
2344341 - 财政年份:2023
- 资助金额:
$ 22.02万 - 项目类别:
Continuing Grant