Collaborative Research: Transfer Printed, Single-Crystalline Si Nanomesh Thin Films

合作研究:转移印刷单晶硅纳米网薄膜

基本信息

  • 批准号:
    2146636
  • 负责人:
  • 金额:
    $ 27.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

Non-technical description: Stretchable electronics have emerged as promising platforms for many important areas such as bio-mimetics, health monitoring, biomedical therapeutics, and soft robotics. This project investigates a set of foundational materials science problems to, for the first time, establish a new electronic materials platform - Si nanomeshes - for next-generation stretchable electronics. The transformative aspect of this project arises from the broad utility of the resulting design and engineering knowledge for nanomesh electronic materials, having profound impacts to not only fundamental materials science but also a broad range of applications in human-electronic interfaces and smart robots. The collaborative team also utilizes this project to integrate creative educational activities with cutting-edge research at multiple levels through: (1) engaging K-12 students via summer research and exhibiting at Oklahoma WONDERtorium Children's museum; (2) actively attracting undergraduate students for early research; and (3) the continuous curriculum development at both Northeastern University and Oklahoma State University to expand capacity in the soft electronic materials field. Technical description: Stretchable electronics research has long been facing the dichotomy between device performance and density. In the past decade, there has been significant progress in realizing stretchable semiconductors, however, existing approaches are still incomplete when high-density, high-performance stretchable electronics are needed. On the basis of strong preliminary results from the research team, the principal investigators hypothesize that with tailored nanomesh geometries and engineered sidewall surface states, Si nanomeshes can achieve simultaneously large stretchability, high mobility and high reliability that are needed for high-density stretchable electronics. Through both theoretical and experimental investigations, this project aims to investigate and establish the interrelationship of structure-processing-properties of Si nanomeshes for stretchable devices. Key structure variables to investigate include in-plane nanomesh pattern, out-of-plane materials stacking and sidewall surface states, while main properties targeted are mechanical flexibility, stretchability, and carrier transport mobilities. The project then achieves Si nanomeshes with desired mesh patterns through viable top-down approaches, prints and fabricates sidewall engineered Si-nanomesh based stretchable devices. A set of combined optical and electrical characterizations systematically investigate the properties of sidewall-engineered Si nanomeshes under stretching and scaling. Besides potential applications for high-performance stretchable electronics, this semiconductor nanomesh concept provides a new platform for materials engineering, and is expected to yield a new family of stretchable materials having tunable electronic and optoelectronic properties with customized nanostructures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:可拉伸电子产品已成为许多重要领域(例如仿生学、健康监测、生物医学治疗和软机器人)的有前途的平台。该项目研究了一系列基础材料科学问题,首次为下一代可拉伸电子产品建立了一个新的电子材料平台——硅纳米网。该项目的变革性方面源于纳米网电子材料的设计和工程知识的广泛应用,不仅对基础材料科学产生深远影响,而且对人机界面和智能机器人的广泛应用产生深远影响。合作团队还利用该项目,通过以下方式将创意教育活动与多个层面的前沿研究相结合:(1)通过暑期研究和在俄克拉荷马州 WONDERtorium 儿童博物馆的展览吸引 K-12 学生; (2)积极吸引本科生进行早期研究; (3)东北大学和俄克拉荷马州立大学不断开发课程,扩大软电子材料领域的能力。技术描述:可拉伸电子学研究长期以来一直面临着器件性能和密度之间的二分法。在过去的十年中,在实现可拉伸半导体方面取得了重大进展,然而,当需要高密度、高性能可拉伸电子器件时,现有方法仍然不完善。基于研究团队强有力的初步结果,主要研究人员假设,通过定制的纳米网格几何形状和工程侧壁表面状态,硅纳米网格可以同时实现高密度可拉伸电子产品所需的大拉伸性、高迁移率和高可靠性。通过理论和实验研究,该项目旨在研究和建立可拉伸器件的硅纳米网结构-加工-性能之间的相互关系。要研究的关键结构变量包括面内纳米网格图案、面外材料堆叠和侧壁表面状态,而主要目标特性是机械灵活性、拉伸性和载流子传输迁移率。然后,该项目通过可行的自上而下的方法实现具有所需网格图案的硅纳米网,打印并制造基于侧壁工程硅纳米网的可拉伸装置。一组组合的光学和电学表征系统地研究了侧壁工程硅纳米网在拉伸和缩放下的性能。除了高性能可拉伸电子产品的潜在应用之外,这种半导体纳米网概念还为材料工程提供了一个新平台,并有望产生一系列新的可拉伸材料,这些材料具有可调节的电子和光电特性以及定制的纳米结构。该奖项反映了 NSF 的法定使命和通过使用基金会的智力优点和更广泛的影响审查标准进行评估,该项目被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanics of Regular-Shape Nanomeshes for Transparent and Stretchable Devices
用于透明和可拉伸器件的规则形状纳米网的力学
  • DOI:
    10.1115/1.4047777
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vinnikova, Sandra;Fang, Hui;Wang, Shuodao
  • 通讯作者:
    Wang, Shuodao
Electrochemically triggered degradation of silicon membranes for smart on-demand transient electronic devices
用于智能按需瞬态电子设备的硅膜电化学触发降解
  • DOI:
    10.1088/1361-6528/ab2853
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Chen, Yaoxu;Wang, Huachun;Zhang, Yuan;Li, Rongfeng;Chen, Changhao;Zhang, Haitian;Tang, Shujun;Liu, Shengnan;Chen, Xian;Wu, Hui;et al
  • 通讯作者:
    et al
Nanomeshed Si nanomembranes
纳米网状硅纳米膜
  • DOI:
    10.1038/s41528-019-0053-5
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    14.6
  • 作者:
    Han, Xun;Seo, Kyung Jin;Qiang, Yi;Li, Zeping;Vinnikova, Sandra;Zhong, Yiding;Zhao, Xuanyi;Hao, Peijie;Wang, Shuodao;Fang, Hui
  • 通讯作者:
    Fang, Hui
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hui Fang其他文献

A Cysteinyl-tRNA Synthetase Mutation Causes Novel Autosomal-Dominant Inheritance of a Parkinsonism/Spinocerebellar-Ataxia Complex
半胱氨酰-tRNA合成酶突变导致帕金森病/脊髓小脑共济失调复合体的新型常染色体显性遗传
  • DOI:
    10.2139/ssrn.3806674
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenxin Zhang;Han;Hui Fang;Hong;H. You;Xiaoyan Huang;Chang;Han Wang;B. Hou;Xiu;F. Feng;Huanming Yang;Jian Wang;Rui Wu;Jianguo Zhang;Jiangong Zhou
  • 通讯作者:
    Jiangong Zhou
Quantitative trait locus analysis of Verticillium wilt resistance in an introgressed recombinant inbred population of Upland cotton
陆地棉渐渗重组自交群体抗黄萎病的数量性状位点分析
  • DOI:
    10.1007/s11032-013-9987-9
  • 发表时间:
    2014-03-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Hui Fang;Huiping Zhou;S. Sanogo;A. Lipka;D. Fang;R. Percy;S. Hughs;Don C. Jones;M. Gore;Jinfa Zhang
  • 通讯作者:
    Jinfa Zhang
[Increasing the thermostability of glutamate decarboxylase from Lactobacillus brevis by introducing proline].
[通过引入脯氨酸提高短乳杆菌谷氨酸脱羧酶的热稳定性]。
Service Restoration with Voltage Control for Resilient Distribution Systems Incorporating Soft Open Points
通过电压控制恢复包含软开点的弹性配电系统的服务
Alterations of hHrd1 expression are related to hyperphosphorylated tau in the hippocampus in Alzheimer's disease
hHrd1 表达的改变与阿尔茨海默病海马 tau 蛋白过度磷酸化有关
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    H. Hou;Yu‐xian Shen;Hong Zhu;Hao Sun;Xue;Hui Fang;Jiang
  • 通讯作者:
    Jiang

Hui Fang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hui Fang', 18)}}的其他基金

CAREER: Transforming Neural Interfaces Using Stretchable, Transparent, Multifunctional Nanomesh Microelectrodes
职业:使用可拉伸、透明、多功能纳米网微电极改变神经接口
  • 批准号:
    2140392
  • 财政年份:
    2021
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Continuing Grant
CAREER: Transforming Neural Interfaces Using Stretchable, Transparent, Multifunctional Nanomesh Microelectrodes
职业:使用可拉伸、透明、多功能纳米网微电极改变神经接口
  • 批准号:
    1847215
  • 财政年份:
    2019
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Continuing Grant
Collaborative Research: Transfer Printed, Single-Crystalline Si Nanomesh Thin Films
合作研究:转移印刷单晶硅纳米网薄膜
  • 批准号:
    1905575
  • 财政年份:
    2019
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Continuing Grant
III: Small: Information Chain Support for Disaster Mitigation, Preparedness, Response and Recovery
III:小型:减灾、备灾、响应和恢复的信息链支持
  • 批准号:
    1423002
  • 财政年份:
    2014
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Standard Grant

相似国自然基金

钝化电荷转移掺杂调控范德华晶体管性能及传输扰动机制研究
  • 批准号:
    62304130
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肿瘤细胞外囊泡ETV4活化间质微环境CAFs促进胰腺癌侵袭转移的分子机理及精准诊疗标志物研究
  • 批准号:
    82303419
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于CYP1A1/ROS负向调控HIF-2α羟基化途径研究术藤合剂抑制大肠癌干细胞侵袭转移的机制
  • 批准号:
    82374253
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
北豆根活性成分蝙蝠葛碱靶向TOMM34增强机体抗肿瘤免疫抑制结直肠癌转移的作用机制研究
  • 批准号:
    82304790
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
GPI锚定蛋白Ly6D通过Fosl1促进胰腺癌转移的分子机制研究
  • 批准号:
    82303397
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
  • 批准号:
    2414527
  • 财政年份:
    2024
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigation of Mass and Energy Transfer Mechanisms in Stimuli-Responsive Smart Sorbents for Direct Air Capture
合作研究:用于直接空气捕获的刺激响应智能吸附剂的质量和能量传递机制的研究
  • 批准号:
    2230593
  • 财政年份:
    2023
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Standard Grant
Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
  • 批准号:
    2324369
  • 财政年份:
    2023
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Standard Grant
Transfer learning leveraging large-scale transcriptomics to map disrupted gene networks in cardiovascular disease
利用大规模转录组学的转移学习来绘制心血管疾病中被破坏的基因网络
  • 批准号:
    10696753
  • 财政年份:
    2023
  • 资助金额:
    $ 27.12万
  • 项目类别:
Collaborative Research: Supercritical Fluids and Heat Transfer - Delineation of Anomalous Region, Ultra-long Distance Gas Transport without Recompression, and Thermal Management
合作研究:超临界流体与传热——异常区域的描绘、无需再压缩的超长距离气体传输以及热管理
  • 批准号:
    2327571
  • 财政年份:
    2023
  • 资助金额:
    $ 27.12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了