Collaborative Research: Experimental deformation of monazite and titanite: Implications for interpretation of petrochronologic data

合作研究:独居石和钛矿的实验变形:对岩石年代学数据解释的启示

基本信息

  • 批准号:
    2217837
  • 负责人:
  • 金额:
    $ 3.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The deformation behavior of rocks controls the strength of the lithosphere, the location and intensity of earthquakes, the response of Earth to impact events, and the concentration and deposition of ore minerals. To understand the conditions and duration under which rocks deformed in the geologic past, and to improve understanding of earthquake processes, mineral resource identification, and crustal strength modelling, we will conduct a series of experiments on minerals important for geologic age dating. These deformation experiments will be conducted at conditions which simulate environments deep within the Earth’s crust. The principal investigators will fabricate synthetic rock samples embedded with natural mineral grains and use a rock deformation apparatus to impose high stress and strain conditions typical of deep Earth shear zones. The experiments will focus on the deformation behavior of accessory phase minerals titanite and monazite, which are routinely used for petrochronology, a technique which uses radiometric age dating to determine the timing of ancient metamorphic reactions and deformation events. The deformation behavior of the major rock-forming minerals (e.g., quartz, feldspar, olivine) has been well-studied, but our experiments will be among the first to investigate the deformation behavior of accessory phase minerals. Accessory phase minerals, such as monazite, are reservoirs for Rare Earth Elements (REEs) and the results of our experiments will provide better understanding of REE mobilization within fault zones. Societal benefits of the project include direct training of graduate and undergraduate students and a postdoctoral researcher in experimental and analytical skills that are valuable in many high-level government, defense, and industrial laboratories. Outreach efforts will involve developing earth science curricula for Providence, RI elementary school. The Department of Earth, Environmental and Planetary Sciences at Brown has an active outreach program known as the Science-Teaching and Education Program (STEP), which partners with local teachers to develop earth science modules in their classes. The project will also contribute to the broadening of underrepresented groups in STEM. The goal of this project is to experimentally deform a selection of accessory phase minerals and use multiple advanced microanalytical techniques to examine how various deformation and recrystallization mechanisms affect the distribution of elements and isotopes important for geochronology. The researchers will conduct a multi-step experimental protocol consisting of deformation in a Griggs-rig solid medium deformation apparatus followed by high temperature static annealing of a subset of samples. Accessory phases monazite and titanite with well-characterized trace element contents will be embedded as porphyroclasts in a matrix of quartz, synthetic quartz, or feldspar and deformed under prescribed temperatures, pressures, and strain rate conditions. Multiple advanced analytical techniques will allow us to investigate the composition and structure of deformed samples from the aggregate to atomic scale. The principal investigators will quantify the influence of lattice defects on the mobility of impurity elements and consequences of recrystallization for interpreting the geochemistry of deformed minerals. Our results will provide fundamental constraints on the rheological behavior of accessory phase minerals and enable more confident applications of accessory phase geochronology and geothermometry to deformed rocks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
岩石的变形行为控制着岩石圈的强度、地震的位置和强度、地球对撞击事件的响应以及矿石矿物的富集和沉积了解过去地质中岩石变形的条件和持续时间。 ,并为了提高对地震过程、矿产资源识别和地壳强度建模的了解,我们将对对地质年代测定很重要的矿物进行一系列实验,这些变形实验将在模拟地球深处环境的条件下进行。主要研究人员将制造嵌入天然矿物颗粒的合成岩石样品,并使用岩石变形装置施加典型的深层地球剪切带高应力和应变条件,实验将重点研究副相矿物钛矿和独居石的变形行为。 ,通常用于岩石年代学,这是一种利用放射性年龄测定来确定古代变质反应和变形事件的时间的技术。石英、长石、橄榄石)已得到充分研究,但我们的实验将是第一个研究副相矿物变形行为的实验之一,例如独居石等副相矿物是稀土元素(REE)的储库,其结果也是如此。我们的实验将有助于更好地了解断层带内的稀土元素动员,该项目的社会效益包括对研究生和本科生以及博士后研究员进行实验和分析技能的直接培训,这些技能在实验和分析技能方面非常有价值。许多高级政府、国防和工业实验室的外展工作将涉及为罗德岛州普罗维登斯小学开发地球科学课程。布朗大学地球、环境和行星科学系有一个积极的外展计划,称为科学教学和教育计划 (STEP) 与当地教师合作,在他们的课堂上开发地球科学模块。该项目还将有助于扩大 STEM 中代表性不足的群体。该项目的目标是通过实验改变一系列辅助阶段。研究人员将进行一项多步骤实验方案,包括在 Griggs-rig 固体介质变形装置中进行变形,然后使用多种先进的微分析技术来研究各种变形和再结晶机制如何影响对地质年代学重要的元素和同位素的分布。对一部分样品进行高温静态退火,具有良好表征的微量元素含量的副相独居石和钛矿将作为碎卟啉嵌入到基质中。石英、合成石英或长石,并在规定的温度、压力和应变率条件下变形,我们将能够研究从聚集体到原子尺度的变形样品的成分和结构。晶格缺陷对杂质元素迁移率的影响以及再结晶的影响,以解释变形矿物的地球化学,我们的结果将为副相矿物的流变行为提供基本约束。使辅助阶段地质年代学和地温测量学更自信地应用于变形岩石。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Nachlas其他文献

William Nachlas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

PKM2-SREBP调控光感受器-RPE糖脂代谢耦联对话在实验性近视模型中的机制研究
  • 批准号:
    82301240
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
LL-37基于线粒体动力学和代谢重编程调节小胶质细胞极化改善实验性自身免疫性脑脊髓炎的作用及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
实验性自身免疫性脑脊髓炎中巨噬细胞调节骨髓造血的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
m6A去甲基化酶Fto在实验性氟中毒突触可塑性损伤中的保护作用与机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 3.48万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134747
  • 财政年份:
    2024
  • 资助金额:
    $ 3.48万
  • 项目类别:
    Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
  • 批准号:
    2244696
  • 财政年份:
    2023
  • 资助金额:
    $ 3.48万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 3.48万
  • 项目类别:
    Continuing Grant
Collaborative Research: High-velocity and long-displacement stick-slips: Experimental analogs of earthquake rupture and the seismic cycle
合作研究:高速和长位移粘滑运动:地震破裂和地震周期的实验模拟
  • 批准号:
    2240418
  • 财政年份:
    2023
  • 资助金额:
    $ 3.48万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了