PREC Track 1: Cal State LA - MolSSI PREC Pathway to Diversity Program
PREC 轨道 1:加州州立大学洛杉矶分校 - MolSSI PREC 多元化途径计划
基本信息
- 批准号:2216858
- 负责人:
- 金额:$ 88.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). The Cal State LA-MolSSI PREC (Partnership for Research and Education in Chemistry) Pathway to Diversity Program is a collaboration between California State University, Los Angeles, a comprehensive public university and Hispanic Serving Institution, and the Molecular Software Sciences Institute (MolSSI) at Virginia Tech to incorporate machine learning (ML) techniques in molecular simulation research and develop innovative pedagogical materials to train early-stage undergraduate students in computational science. Cal State LA undergraduate and master’s students will participate year-round in mentored research and attend an annual workshop at MolSSI. Community college students will take part in mentored summer research experiences at Cal State LA alongside these students. Additionally, early-stage undergraduate students from local community colleges and Cal State LA will participate in an annual computational workshop taught by instructors from Cal State LA and MolSSI that emphasizes scientific programming and a variety of molecular simulation and ML techniques, as well as professional development activities. Overall, this PREC aims to make a significant contribution to the recruitment and training of the next generation of molecular simulation scientists who will require a deep understanding of both physical and chemical principles and computational techniques.Machine learning (ML) methods have transformed the fields of chemistry and molecular sciences in recent years, and will continue to do so in the future. The Cal State LA-MolSSI PREC (Partnership for Research and Education in Chemistry) will be organized around three thematic research thrusts that each use ML and physics-based simulation methods to create new computational models applicable to a range of chemical and biochemical phenomena. Thrust 1 will focus on developing ML approaches for computing the relative entropies and thermodynamic stabilities of molecular crystal polymorphs. Thrust 2 will aim to develop a hybrid physics-based and ML approach for predicting the relative binding free energies of small protein-ligand complexes. Thrust 3 will use ML to parametrize small molecule force fields that include a direct polarization electrostatic model and other advanced nonbonded potentials. The results of this research will help answer pressing questions in chemistry, biophysics, materials science, and pharmacology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Cal State La-Molsssi Prec(公共法117-2)。 )在弗吉尼亚理工学院(Virginia Tech)纳入机器学习(ML)技术模拟研究,并开发创新的教学法,以训练地下阶段的Cal State La Underground,Master's将参加Molssi的年度训练大学生将与这些学生一起在Cal State La中度过夏季的研究经验。多样性的卵形模拟和ML技术的开发活动总体而言,这一旨在使下一代分子学家的招募重要近年来,化学和分子科学的领域,将继续进行诱导化学),将组织三个推力,每种推力都使用ML和基于物理的仿真方法来创建适用于一系列化学的新计算模型生化现象1以计算基于分子晶体的相对熵和热力学的稳定性。有效的问题。该奖项在化学,生物物理学,材料科学和药理学方面都反映了NSF的任务,并使用Toundation的知识分子和更广泛的影响审查了标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Calculating the Binding Entropy of Host-Guest Systems with Physics-Guided Neural Networks
使用物理引导神经网络计算主客体系统的结合熵
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Rebel, Alles;Risheh, Ali;Massoudian, Negin;Forouzesh, Negin
- 通讯作者:Forouzesh, Negin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olaseni Sode其他文献
Olaseni Sode的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olaseni Sode', 18)}}的其他基金
REU Site: Research Experience for Undergraduates in Chemistry and Biochemistry
REU 网站:化学和生物化学本科生的研究经验
- 批准号:
2150413 - 财政年份:2022
- 资助金额:
$ 88.65万 - 项目类别:
Continuing Grant
相似国自然基金
融合多源生物信息-连续知识追踪解码-无关意图拒识机制的康复外骨骼人体运动意图识别研究
- 批准号:62373344
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于三维显微图像序列的细胞追踪与迁移行为分析方法
- 批准号:62301296
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用精准谱系追踪揭示关节囊纤维化导致颞下颌关节强直的分子机制研究
- 批准号:82301010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医养结合机构服务模式对老年人健康绩效的影响、机制与引导政策:基于准自然实验的追踪研究
- 批准号:72374125
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
基于量子电压动态追踪补偿的精密磁通测量方法研究
- 批准号:52307021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
- 批准号:
2324714 - 财政年份:2024
- 资助金额:
$ 88.65万 - 项目类别:
Standard Grant
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:
2327025 - 财政年份:2024
- 资助金额:
$ 88.65万 - 项目类别:
Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
- 批准号:
2327206 - 财政年份:2024
- 资助金额:
$ 88.65万 - 项目类别:
Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
- 批准号:
2327232 - 财政年份:2024
- 资助金额:
$ 88.65万 - 项目类别:
Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
- 批准号:
2327267 - 财政年份:2024
- 资助金额:
$ 88.65万 - 项目类别:
Standard Grant