CAREER: Tuning Topology and Strong Correlations for the Next Generation of Topological Superconductors

职业:调整下一代拓扑超导体的拓扑和强相关性

基本信息

  • 批准号:
    2145373
  • 负责人:
  • 金额:
    $ 68.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

This award is funded in part under the American Rescue Plan Act of 2021 (Public Law 117-2).NON-TECHNICAL DESCRIPTION: A theoretically predicted quantum matter – a topological superconductor – not only conducts electricity with zero resistance but also protects its innate quantum properties from material imperfections. Experimentally realizing this new material is key to enabling future fault-tolerant quantum computers which can outperform classical computers by orders-of-magnitude. Yet, the existence of such materials remains elusive. This project supported by the Condensed Matter Physics program in the Division of Materials Research utilizes atomic-level layer-by-layer construction to fabricate new generations of topological superconductors, and performs advanced material characterizations to establish the evidence for this new state of matter. This project provides a substantial step forward to realize topological superconductors at temperatures achievable by industrial cryogenics. It can have profound impacts in not only condensed matter physics but also broadly in quantum science and engineering: new quantum computing architectures and protocols can be built on top of this material discovery. The research effort is integrated with an education and outreach theme “Immersive Quantum Material Education” to train students at graduate, undergraduate, and high-school levels. The research results are disseminated through dedicated activities such as the “UChicago Quantum Quickstart” workshop for 9th-to-11th grade students with demonstrated 34% participation from under-represented minority groups. Graduate students trained through this project can advance their careers in academia or in the emerging quantum engineering industry, forming the workforce for the future and ensuring the American leadership in both quantum sciences and quantum economy.TECHNICAL DESCRIPTION: Topological superconductors are a new class of superconductors predicted to enable fault-tolerant quantum computing. Current material platforms for putative topological superconductors are based on heterostructures of conventional superconductors and semiconductors, and require sophisticated engineering only to work at temperatures below 1 Kelvin. Yet, the conclusive test of topological superconductivity remains elusive. The goals of this project are three-fold: 1) performing atomic-level structural tuning of FeTeSe/oxides to optimize the topological electronic properties using molecular beam epitaxy; 2) performing femtosecond dynamical tuning of FeTeSe/oxides to reveal the relationship between topology and electron-electron interactions using time-resolved photoemission; 3) testing non-Abelian anyon statistics by fabricating topological quantum devices using molecular beam epitaxy with shadow masks. This project can substantially advance the field of topological materials by addressing the urgent questions on the existence and optimization of topological superconductors, and provide transformative insights into the relationship between topological superconductivity and strong electron-electron interactions. In the education and outreach theme “Immersive Quantum Material Education,” the principal investigator engages with students at all levels on the cutting-edge research on topological materials. Workshops such as the “MASTER Summer School” for undergraduate students and “Certificate in Quantum Engineering and Technology” for industrial workers promote awareness among the public on topological superconductivity, benefiting students from under-represented minority groups. The educational effort establishes the principal investigator’s laboratory as an anchor to facilitate general education on quantum science and engineering in South Side Chicago.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的部分资金来源是《2021 年美国救援计划法案》(公法 117-2)。 非技术描述:理论上预测的量子物质(拓扑超导体)不仅可以零电阻导电,而且可以保护其固有的量子实验性地实现这种新材料是实现未来容错量子计算机的关键,它的性能可以比传统计算机高出几个数量级。这种材料的研究仍然难以捉摸,该项目由材料研究部的凝聚态物理项目支持,利用原子级的逐层构造来制造新一代的拓扑超导体,并进行先进的材料表征来为此建立证据。该项目为在工业低温可实现的温度下实现拓扑超导体迈出了实质性的一步,它不仅对凝聚态物理而且对量子科学也产生了深远的影响。和工程:新的量子计算架构和协议可以建立在这一材料发现的基础上,该研究工作与“沉浸式量子材料教育”的教育和推广主题相结合,以培训研究生、本科生和高中水平的学生。研究结果通过专门的活动进行传播,例如针对 9 至 11 年级学生的“芝加哥大学量子快速入门”研讨会,其中 34% 的参与者来自少数族裔群体,通过该项目培训的研究生可以取得进步。他们在学术界或新兴量子工程行业的职业生涯,形成未来的劳动力队伍,并确保美国在量子科学和量子经济方面的领导地位。技术描述:拓扑超导体是一类新型超导体,预计将实现容错量子计算目前推定的拓扑超导体材料平台基于传统超导体和半导体的异质结构,并且只需要复杂的工程即可在低于 1 开尔文的温度下工作。该项目的目标有三个:1)利用分子束外延对 FeTeSe/氧化物进行原子级结构调谐,以优化拓扑电子特性;2)对 FeTeSe/氧化物进行飞秒动态调谐,以揭示拓扑超导性。使用时间分辨光电发射来研究拓扑和电子-电子相互作用之间的关系;3)通过使用分子束外延制造拓扑量子器件来测试非阿贝尔任意子统计;该项目可以通过解决拓扑超导体的存在和优化的紧迫问题来极大地推进拓扑材料领域的发展,并在教育和推广中为拓扑超导与强电子-电子相互作用之间的关系提供变革性的见解。以“沉浸式量子材料教育”为主题,首席研究员与各级学生一起开展拓扑材料前沿研究工作坊,例如针对本科生的“硕士暑期学校”和“证书”。针对产业工人的“量子工程与技术”提高了公众对拓扑超导性的认识,使来自代表性不足的少数群体的学生受益。这项教育工作将首席研究员实验室建立为促进芝加哥南区量子科学与工程普通教育的支柱。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Layer-by-layer disentanglement of Bloch states
布洛赫态的逐层解开
  • DOI:
    10.1038/s41567-023-02008-4
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Lee, Woojoo;Fernandez;Tan, Hengxin;Yan, Chenhui;Guan, Yingdong;Lee, Seng Huat;Mei, Ruobing;Liu, Chaoxing;Yan, Binghai;Mao, Zhiqiang;et al
  • 通讯作者:
    et al
Delicate Ferromagnetism in MnBi 6 Te 10
MnBi 6 Te 10 中的微妙铁磁性
  • DOI:
    10.1021/acs.nanolett.2c02500
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Yan, Chenhui;Zhu, Yanglin;Miao, Leixin;Fernandez;Green, Emanuel;Mei, Ruobing;Tan, Hengxin;Yan, Binghai;Liu, Chao;Alem, Nasim;et al
  • 通讯作者:
    et al
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shuolong Yang其他文献

The Future of the Correlated Electron Problem
相关电子问题的未来
  • DOI:
    10.1103/physrevlett.73.1158
  • 发表时间:
    2020-10-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Alexandradinata;N. P. Armitage;A. Baydin;W. Bi;Yue Cao;Hitesh J. Changlani;E. Chertkov;E. H. D. S. Neto;Luca V. Delacrétaz;Ismail El Baggari;G. M. Ferguson;W. Gannon;S. A. A. Ghorashi;B. Goodge;O. Goulko;G. Grissonnanche;A. Hallas;I. Hayes;Yu He;E. Huang;A. Kogar;D. Kumah;Jong Yeon Lee;A. Legros;F. Mahmood;Y. Maximenko;Nick Pellatz;H. Polshyn;T. Sarkar;A. Scheie;K. Seyler;Zhenzhong Shi;B. Skinner;L. Steinke;K. Thirunavukkuarasu;T. V. Trevisan;M. Vogl;P. Volkov;Yao Wang;Yishu Wang;D. Wei;Kaya Wei;Shuolong Yang;Xian Zhang;Ya;Liuyan Zhao;A. Zong
  • 通讯作者:
    A. Zong
Ultrafast optical excitation of a persistent surface-state population in the topological insulator Bi2Se3.
拓扑绝缘体 Bi2Se3 中持久表面态布居的超快光激发。
  • DOI:
    10.1103/physrevlett.108.117403
  • 发表时间:
    2012-03-14
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    J. Sobota;Shuolong Yang;J. Analytis;Yulin Chen;I. Fisher;P. Kirchmann;Z. Shen
  • 通讯作者:
    Z. Shen
Origins of electronic bands in the antiferromagnetic topological insulator MnBi2Te4
  • DOI:
    10.1103/physrevb.104.l041102
  • 发表时间:
    2021-05-14
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Chenhui Yan;Sebastian Fern;ez;ez;Ruobing Mei;S. Lee;N. Protić;Rikuto Fukumori;Binghai Yan;Chaoxing Liu;Z. Mao;Shuolong Yang
  • 通讯作者:
    Shuolong Yang
Dehybridization of f and d states in the heavy-fermion system YbRh2Si2
重费米子系统 YbRh2Si2 中 f 和 d 态的去杂化
  • DOI:
    10.1103/physrevb.97.165108
  • 发表时间:
    2018-04-06
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    D. Leuenberger;J. Sobota;Shuolong Yang;H. Pfau;D. J. Kim;S. Mo;Z. Fisk;P. Kirchmann;Z. Shen
  • 通讯作者:
    Z. Shen
Distinguishing Surface and Bulk Electromagnetism via Their Dynamics in an Intrinsic Magnetic Topological Insulator
通过本征磁拓扑绝缘体中的动力学来区分表面电磁和体电磁
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Khanh Duy Nguyen;Woojoo Lee;Jianchen Dang;Tongyao Wu;Gabriele Berruto;Chenhui Yan;Chi Ian Jess Ip;Haoran Lin;Qiang Gao;Seng Huat Lee;Binghai Yan;Chao;Zhiqiang Mao;Xiao;Shuolong Yang
  • 通讯作者:
    Shuolong Yang

Shuolong Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shuolong Yang', 18)}}的其他基金

EAGER: Quantum Manufacturing: In-situ Nano-Patterned Topological Josephson Junctions
EAGER:量子制造:原位纳米图案拓扑约瑟夫森结
  • 批准号:
    2240489
  • 财政年份:
    2023
  • 资助金额:
    $ 68.72万
  • 项目类别:
    Standard Grant
MRI: Development of a Miniaturized Molecular Beam Epitaxy Setup for Direct Printing of Quantum Circuits
MRI:开发用于直接打印量子电路的小型化分子束外延装置
  • 批准号:
    2019131
  • 财政年份:
    2020
  • 资助金额:
    $ 68.72万
  • 项目类别:
    Standard Grant

相似国自然基金

基于多模态脑成像技术的音-色匹配五行徵调音乐调节GAD情绪障碍的视听跨通道整合机制研究
  • 批准号:
    82374622
  • 批准年份:
    2023
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
基于多模态磁共振技术研究五行徵调音乐治疗GAD的中枢响应机制
  • 批准号:
    81774455
  • 批准年份:
    2017
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
基于生理的言语产生动态模型研究
  • 批准号:
    61202187
  • 批准年份:
    2012
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
五行角调音乐联合中药治疗慢性疲劳综合征之临床增效机制研究
  • 批准号:
    81173227
  • 批准年份:
    2011
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
麻江型铜鼓振动模式及调音机理研究
  • 批准号:
    10164002
  • 批准年份:
    2001
  • 资助金额:
    6.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
  • 批准号:
    2887634
  • 财政年份:
    2024
  • 资助金额:
    $ 68.72万
  • 项目类别:
    Studentship
Tuning near-infrared photosynthesis
调节近红外光合作用
  • 批准号:
    BB/X015955/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.72万
  • 项目类别:
    Research Grant
OAC Core: Cost-Adaptive Monitoring and Real-Time Tuning at Function-Level
OAC核心:功能级成本自适应监控和实时调优
  • 批准号:
    2402542
  • 财政年份:
    2024
  • 资助金额:
    $ 68.72万
  • 项目类别:
    Standard Grant
CAS-SC: Tuning Hydrocarbon Products from Temperature-Gradient Thermolysis of Polyolefins and the Subsequent Upcycling to Functional Chemicals
CAS-SC:调整聚烯烃温度梯度热解的碳氢化合物产品以及随后升级为功能化学品
  • 批准号:
    2411680
  • 财政年份:
    2024
  • 资助金额:
    $ 68.72万
  • 项目类别:
    Standard Grant
Tuning Large language models to read biological literature
调整大型语言模型以阅读生物文献
  • 批准号:
    BB/Y514032/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.72万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了