CAREER: Probing and Manipulating Electronic and Spin Degrees of Freedom in Paramagnetic Single Molecule Circuits
职业:探测和操纵顺磁单分子电路中的电子和自旋自由度
基本信息
- 批准号:2145276
- 负责人:
- 金额:$ 65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).With the support of the Chemical Structure, Dynamics, and Mechanisms A Program in the Division of Chemistry, Dr. Maria Kamenetska of Boston University is investigating the electronic and magnetic properties of single paramagnetic molecules wired into an electric circuit. The use of molecules as switches, transistors, or qubits could enable the development of smaller and more powerful electronic devices than what is currently available. Of particular interest for this application are paramagnetic molecules, which have intrinsic magnetic properties, making them candidates for applications in non-volatile memory and in quantum information science. Maria Kamenetska and her group use an approach based on scanning tunneling microscopy to measure current through a single molecule bound to metal electrodes. These experimental measurements are complemented with computational investigations to elucidate how the chemical environment influences the electronic and magnetic properties of the resulting molecular circuits. Understanding chemical interactions between the electrodes and paramagnetic molecule can improve circuit reliability, control, and functionality, with potential for magnetic sensing and gating in single molecule circuits. Broader impacts focus on training a diverse and quantum-literate workforce at the interface of molecular science, electronics and quantum technology as well as building and improving the curriculum of and mentoring students in the newly-implemented Chemistry and Physics undergraduate major at Boston University.This research aims to identify chemical design principles and nano-manipulation techniques for forming robust single paramagnetic molecule circuits and to investigate their emergent electronic and spin degrees of freedom. Experimental approaches, such as inorganic synthesis and scanning tunneling microscope break junction (STMBJ) single molecule conductance measurements are coupled with density functional theory (DFT) and non-equilibrium green function (NEGF) computational techniques to achieve a comprehensive and iterative study of magnetically-functional single molecule circuits. Three terminal electrical measurements are performed using an electrochemical STM configuration to reveal the effect of metal-molecule chemistry on electronic degrees of freedom of the junction, while STMBJ measurements on ferromagnetic electrodes allow spin-resolved electron transport measurements. DFT calculations support the experimental work and provide further insight into structure-property relationships in metal-molecule junctions. The broader impacts focus on student training at the interface of molecular science, electronics and quantum technology. A newly developed Chemistry and Physics undergraduate major, that aims to promote diversity and inclusion, serves to create of an environment that encourages interdisciplinary science at an early career stage.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金根据《2021 年美国救援计划法案》(公法 117-2)提供。在化学系化学结构、动力学和机制项目的支持下,波士顿大学正在研究连接到电路中的单个顺磁性分子的电子和磁性特性。使用分子作为开关、晶体管或量子位可以开发出比目前可用的更小、更强大的电子设备。该应用特别感兴趣的是顺磁分子,它们具有固有的磁性,使其成为非易失性存储器和量子信息科学应用的候选者。 Maria Kamenetska 和她的团队使用基于扫描隧道显微镜的方法来测量通过与金属电极结合的单个分子的电流。这些实验测量与计算研究相辅相成,以阐明化学环境如何影响所得分子电路的电子和磁性特性。了解电极和顺磁分子之间的化学相互作用可以提高电路的可靠性、控制和功能,并具有单分子电路中磁传感和门控的潜力。更广泛的影响侧重于在分子科学、电子学和量子技术的交叉领域培养一支多元化且具有量子素养的劳动力,以及建立和改进波士顿大学新实施的化学和物理本科专业的课程并指导学生。研究旨在确定化学设计原理和纳米操纵技术,以形成坚固的单顺磁分子电路,并研究其新兴的电子和自旋自由度。无机合成和扫描隧道显微镜断裂结(STMBJ)单分子电导测量等实验方法与密度泛函理论(DFT)和非平衡绿函数(NEGF)计算技术相结合,以实现磁性的全面和迭代研究功能性单分子电路。使用电化学 STM 配置进行三端子电测量,以揭示金属分子化学对结电子自由度的影响,而铁磁电极上的 STMBJ 测量允许自旋分辨电子传输测量。 DFT 计算支持实验工作,并进一步深入了解金属分子连接中的结构-性能关系。更广泛的影响集中在分子科学、电子学和量子技术交叉领域的学生培训。新开发的化学和物理本科专业,旨在促进多样性和包容性,旨在创造一个鼓励职业生涯早期阶段跨学科科学的环境。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Kamenetska其他文献
Phenol is a pH-activated linker to gold: a single molecule conductance study
- DOI:
10.1039/d3nr05257e - 发表时间:
2023-12 - 期刊:
- 影响因子:6.7
- 作者:
Brent Lawson;Hannah E. Skipper;Maria Kamenetska - 通讯作者:
Maria Kamenetska
Conductance and assembly of quasi-1D coordination chain molecular junctions with triazole derivatives
- DOI:
10.1039/d4dt01085j - 发表时间:
2024-06 - 期刊:
- 影响因子:4
- 作者:
Zelin Miao;Xiaoyun Pan;Maria Kamenetska - 通讯作者:
Maria Kamenetska
Tunable growth of a single high-density ZIF nanoshell on a gold nanoparticle isolated in an optical trap
- DOI:
10.1039/d3nr05316d - 发表时间:
2024-01 - 期刊:
- 影响因子:6.7
- 作者:
Daniel Jackson;Maitreya Rose;Maria Kamenetska - 通讯作者:
Maria Kamenetska
Maria Kamenetska的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Kamenetska', 18)}}的其他基金
MRI: Acquisition of a Universal Optical Tweezer Platform to Probe Nanoscale Structure and Function of Single Polymers Using Force and Optical Spectroscopy
MRI:获取通用光镊平台,利用力和光谱来探测单一聚合物的纳米级结构和功能
- 批准号:
2117585 - 财政年份:2021
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
NSF Postdoctoral Fellowship in Biology for FY 2011
2011 财年 NSF 生物学博士后奖学金
- 批准号:
1103715 - 财政年份:2012
- 资助金额:
$ 65万 - 项目类别:
Fellowship Award
相似国自然基金
基于可调制长周期外场诱导的强关联系统中量子态的探测与操纵研究
- 批准号:12305026
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于新型单光纤集成器件的光操纵及超分辨探测方法研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
基于液滴微透镜的光学探测与纳米成像
- 批准号:61905092
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
金刚石复合自旋体系的实验研究
- 批准号:11775209
- 批准年份:2017
- 资助金额:90.0 万元
- 项目类别:面上项目
宽禁带半导体纳米材料中自旋弛豫和光学相干操纵研究
- 批准号:11304186
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Probing and manipulating the bacterial cell wall using chemically modified sugars
使用化学修饰糖探测和操纵细菌细胞壁
- 批准号:
2885428 - 财政年份:2023
- 资助金额:
$ 65万 - 项目类别:
Studentship
Conference: GRC Bioelectronics: Probing, Manipulating and Understanding Cell-Materials Interfaces to Achieve Electrical Continuity; June 16-21, 2019; Andover, NH
会议:GRC生物电子学:探测、操纵和理解细胞材料界面以实现电气连续性;
- 批准号:
1912164 - 财政年份:2019
- 资助金额:
$ 65万 - 项目类别:
Standard Grant
Probing and manipulating strained interfaces with oxide superconductors
探测和操纵氧化物超导体的应变界面
- 批准号:
1508494 - 财政年份:2015
- 资助金额:
$ 65万 - 项目类别:
Continuing Grant
Ultrafast Science Facility: manipulating and probing matter on fs timescales with microscopic resolution
超快科学设施:以微观分辨率在飞秒时间尺度上操纵和探测物质
- 批准号:
LE140100162 - 财政年份:2014
- 资助金额:
$ 65万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Probing and manipulating superconductivity in nanostructures
探测和操纵纳米结构中的超导性
- 批准号:
1105986 - 财政年份:2011
- 资助金额:
$ 65万 - 项目类别:
Standard Grant