Career: Understanding Radiative Transport in Flowing and Reactive Participating Media with Integrated Models and Measurements

职业:通过集成模型和测量了解流动和反应性参与介质中的辐射传输

基本信息

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).From sunrise and sunset hues in the sky, to solar cells, to night vision cameras, energy transported as radiation is pervasive around us. Predicting and controlling thermal radiation interactions with matter is crucial for the success of thermal and solar reactor technologies. However, evaluation of radiative transport in dynamic systems with flowing and reactive particles is a fundamental challenge in the thermal sciences community. Challenges in model development stem from the necessity to track interactions of radiation with ensembles of particles that are continually evolving. Flow can affect spatial distributions of particles, and chemical reactions can influence size, shape, and particle concentration, and material properties. Experimentally, isolating underlying dependencies of measured outcomes due to compounded physical effects also poses complexities. The overarching vision of this project is to establish a more holistic understanding of this flow-radiation-reaction coupling using computational modeling with complementary measurements. An integrated education and outreach plan has been developed, in partnership with the University of Michigan Museum, aimed at increasing literacy and excitement for solar energy technologies, especially amongst women and underrepresented middle- and high-school students in Michigan. This will be accomplished through training in scientific communication for graduate students, community outreach with interactive demonstrations, and curriculum development for middle schoolers. The main research goal is to advance the fundamental and mechanistic understanding of radiative transport in flowing and reactive particles with applications to high-temperature thermal systems, and thermochemical and photocatalytic reactors for fuels production. The approach is to perform direct numerical simulations of radiation using probabilistic and deterministic techniques for selected materials, flow configurations and reacting systems. These rigorous, yet computationally intensive models will be connected to more tractable data-driven models and experimental measurements to deduce generalized radiative- and heat-transfer correlations. New experimental techniques are developed to measure particle temperatures, while in motion, using high-speed thermal imaging and fiber-optic pyrometry. Measurements will be used to establish new knowledge on how ensembles of particles can be functionalized to achieve improved radiative and overall energy transport. In addition to developing powerful computational analyses and experimental diagnostic tools, a deep level of understanding will be cultivated by mapping the influence of several key dimensionless parameters on a system’s heat-transfer performance, energy conversion efficiencies and the rates of fuel production. By establishing this currently missing link, the project will help fast-track materials development and inform design and operation for a host of energy systems to boost their overall performance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金根据《2021 年美国救援计划法案》(公法 117-2)提供。从天空中的日出和日落色调,到太阳能电池,再到夜视摄像头,能量传输随辐射无处不在预测和控制热辐射与物质的相互作用对于热反应堆和太阳能反应堆技术的成功至关重要,然而,评估具有流动和反应粒子的动态系统中的辐射传输是热科学界的一个基本挑战。模型开发中的问题源于跟踪辐射与不断演化的粒子群的相互作用的必要性,流动可以影响粒子的空间分布,而化学反应可以影响尺寸、形状、粒子浓度以及材料特性,从而在实验上隔离潜在的依赖性。由于复合物理效应而导致的测量结果也带来了复杂性,该项目的总体愿景是使用计算模型和补充测量来建立对这种流动-辐射-反应耦合的更全面的理解。合伙与密歇根大学博物馆合作,旨在提高人们对太阳能技术的认识和兴趣,特别是密歇根州的女性和代表性不足的中学生和高中生。这将通过对研究生进行科学交流培训、互动社区推广来实现。主要研究目标是促进对流动和反应粒子的辐射传输的基本和机械理解,并将其应用于高温热系统以及用于燃料生产的热化学和光催化反应器。到使用概率和确定性技术对选定的材料、流动配置和反应系统进行直接辐射数值模拟。这些严格但计算密集的模型将连接到更易于处理的数据驱动模型和实验测量,以推断广义的辐射和传热。开发了新的实验技术来测量运动中的粒子温度,测量结果将用于建立关于如何将粒子集合功能化的新知识。实现改进的辐射和整体能量传输除了开发强大的计算分析和实验诊断工具外,还将通过绘制几个关键无量纲参数对系统传热性能、能量转换效率和能量的影响来加深理解。通过建立这个目前缺失的环节,该项目将有助于快速跟踪材料开发,并为许多能源系统的设计和运行提供信息,以提高其整体性能。该奖项反映了 NSF 的法定使命,并被认为是值得的。通过评估提供支持基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rohini Bala Chandran其他文献

Harnessing Photoelectrochemistry for Wastewater Nitrate Treatment Coupled with Resource Recovery
利用光电化学处理废水硝酸盐并结合资源回收
A Comparative Radiative Property Evaluation of Sintered Bauxite and AMS4003 Ceramic Particles
烧结铝土矿和AMS4003陶瓷颗粒辐射性能的比较评价
  • DOI:
    10.52825/solarpaces.v1i.736
  • 发表时间:
    2024-01-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. M. Mayer;Brandon Surhigh;Kyu Bum Han;Eunjin Jeon;Rohini Bala Chandran
  • 通讯作者:
    Rohini Bala Chandran
Evaluating particle-suspension reactor designs for Z-scheme solar water splittingviatransport and kinetic modeling
  • DOI:
    10.1039/c7ee01360d
  • 发表时间:
    2017-09
  • 期刊:
  • 影响因子:
    32.5
  • 作者:
    Rohini Bala Chandran;Sasuke Breen;Yuanxun Shao;Shane Ardo;Adam Z. Weber
  • 通讯作者:
    Adam Z. Weber
Calculations of theoretical efficiencies for electrochemically-mediated tandem solar water splitting as a function of bandgap energies and redox shuttle potential
  • DOI:
    10.1039/c8ee01828f
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    32.5
  • 作者:
    Sam Keene;Rohini Bala Chandran;Shane Ardo
  • 通讯作者:
    Shane Ardo

Rohini Bala Chandran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

面向智能化仿真社会实验的具身人物视觉理解与身份构建
  • 批准号:
    62302296
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向真实场景的基于人体关节点的行为理解研究
  • 批准号:
    62302093
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
油菜雄性不育恢复基因BnaMs3抑制不育基因Bnams4b毒害的分子机理解析
  • 批准号:
    32372178
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
SlHSD2调控番茄果实角质层发育的机理解析
  • 批准号:
    32302571
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
山葡萄VaZFHD4-VaNAC26模块调控茉莉酸合成应答干旱胁迫的分子机理解析
  • 批准号:
    32302517
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Understanding Nanoscale Radiative Transport in Multi-Body Systems
职业:了解多体系统中的纳米级辐射传输
  • 批准号:
    2237003
  • 财政年份:
    2023
  • 资助金额:
    $ 53.29万
  • 项目类别:
    Continuing Grant
CAREER: Probing and Understanding Nonreciprocal and Topological Radiative Heat Transport in Many-Body Magnetized Systems
职业:探索和理解多体磁化系统中的不可逆和拓扑辐射热传输
  • 批准号:
    2238927
  • 财政年份:
    2023
  • 资助金额:
    $ 53.29万
  • 项目类别:
    Standard Grant
Understanding the Influences of Microphysical Interactions with Pollution and Water on Dust Scattering Properties and Radiative Effects
了解污染物和水的微物理相互作用对粉尘散射特性和辐射效应的影响
  • 批准号:
    2232138
  • 财政年份:
    2023
  • 资助金额:
    $ 53.29万
  • 项目类别:
    Continuing Grant
Understanding How Latent Heat Release and Cloud Radiative Effects Shape Jet Variability and Jet Shifts Under Climate Change
了解潜热释放和云辐射效应如何影响气候变化下的射流变率和射流变化
  • 批准号:
    2202991
  • 财政年份:
    2022
  • 资助金额:
    $ 53.29万
  • 项目类别:
    Standard Grant
Understanding strong magnetic fields and radiative processes on the surfaces of neutron stars with semiconductor X-ray polarimeters
使用半导体 X 射线偏振计了解中子星表面的强磁场和辐射过程
  • 批准号:
    19H01906
  • 财政年份:
    2019
  • 资助金额:
    $ 53.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了