CAREER: Enriching Conversational Information Retrieval via Mixed-Initiative Interactions

职业:通过混合主动交互丰富对话信息检索

基本信息

  • 批准号:
    2143434
  • 负责人:
  • 金额:
    $ 57.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).It has become clear that providing access to information through natural language conversations will play a significant role in the future of search technology. This will be enabled by developing efficient and effective conversational search engines. Existing systems are generally designed based on a query-response paradigm, in which the user initiates the interaction by submitting typing a word or phrase, and the system responds with one or more documents. This process repeats itself until the user either receives a useful response or terminates the search session. This is not an optimal design for interaction. A better approach would be to create search systems that operate like a conversation. In a conversational search systems, for instance, the system may ask a clarifying question or can recommend new information even though it is not an explicit response to the search query. A conversational search system, the conversation should yield the information that is needed to facilitate the ultimate goal of user satisfaction. The mentioned query-response paradigm does not support these natural conversational interactions. This CAREER award aims to advance the state-of-the-art by envisioning solutions that go beyond this query-response paradigm.To achieve this goal, this project studies theoretical and machine learning solutions for generating and handling mixed-initiative interactions in information seeking conversations. In more detail, this project explores the following three research thrusts: (1) developing theoretical foundations for measuring mixed-initiative information seeking conversations; (2) developing models for clarifying the user's information needs which is considered as the most common mixed-initiative interaction type; and (3) developing models for proactive informational contributions to ongoing conversations. In addition to these algorithmic and modeling contributions, this project also develops a number of invaluable resources for advancing the field of conversational information retrieval, including a conversational scholarly assistant agent that will be used as a tool for online experimentation and public data creation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金来源于《2021 年美国救援计划法案》(公法 117-2)。很明显,通过自然语言对话提供信息访问将在搜索技术的未来发挥重要作用。这将通过开发高效且有效的会话搜索引擎来实现。现有系统通常是基于查询-响应范例来设计的,其中用户通过提交输入单词或短语来发起交互,并且系统以一个或多个文档进行响应。此过程会不断重复,直到用户收到有用的响应或终止搜索会话。这不是交互的最佳设计。更好的方法是创建像对话一样运行的搜索系统。例如,在会话式搜索系统中,系统可能会提出澄清问题或推荐新信息,即使它不是对搜索查询的明确响应。在会话式搜索系统中,会话应该产生促进用户满意的最终目标所需的信息。提到的查询-响应范例不支持这些自然的对话交互。该职业奖旨在通过设想超越这种查询响应范式的解决方案来推进最先进的技术。为了实现这一目标,该项目研究用于生成和处理信息搜索中的混合主动交互的理论和机器学习解决方案对话。更详细地说,该项目探讨了以下三个研究重点:(1)开发测量混合主动信息寻求对话的理论基础; (2) 开发澄清用户信息需求的模型,这被认为是最常见的混合主动交互类型; (3) 开发模型,为正在进行的对话主动提供信息。除了这些算法和建模贡献之外,该项目还开发了许多宝贵的资源来推进会话信息检索领域,包括一个会话学术助理代理,它将用作在线实验和公共数据创建的工具。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Editable User Profiles for Controllable Text Recommendations
用于可控文本推荐的可编辑用户配置文件
  • DOI:
    10.1145/3539618.3591677
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mysore, Sheshera;Jasim, Mahmood;Mccallum, Andrew;Zamani, Hamed
  • 通讯作者:
    Zamani, Hamed
A Personalized Dense Retrieval Framework for Unified Information Access
统一信息访问的个性化密集检索框架
Large Language Model Augmented Narrative Driven Recommendations
大语言模型增强叙事驱动的推荐
  • DOI:
    10.1145/3604915.3608829
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mysore, Sheshera;Mccallum, Andrew;Zamani, Hamed
  • 通讯作者:
    Zamani, Hamed
Conversational Information Seeking
对话式信息搜寻
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hamed Zamani其他文献

Optimization Methods for Personalizing Large Language Models through Retrieval Augmentation
通过检索增强个性化大型语言模型的优化方法
  • DOI:
    10.48550/arxiv.2404.05970
  • 发表时间:
    2024-04-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alireza Salemi;Surya Kallumadi;Hamed Zamani
  • 通讯作者:
    Hamed Zamani
Expanded N-Grams for Semantic Text Alignment Notebook for PAN at CLEF 2014
CLEF 2014 上用于 PAN 的语义文本对齐笔记本的扩展 N-Grams
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samira Abnar;Mostafa Dehghani;Hamed Zamani;A. Shakery
  • 通讯作者:
    A. Shakery
Towards Theoretical Understanding of Weak Supervision for Information Retrieval
对信息检索弱监督的理论认识
  • DOI:
  • 发表时间:
    2018-06-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hamed Zamani;W. Bruce Croft
  • 通讯作者:
    W. Bruce Croft
MIMICS: A Large-Scale Data Collection for Search Clarification
MIMICS:用于澄清搜索的大规模数据收集
Improving Link Prediction Algorithms in Complex Networks
改进复杂网络中的链路预测算法
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hamed Zamani;M. Asadpour
  • 通讯作者:
    M. Asadpour

Hamed Zamani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

亮氨酸丰富结构蛋白LRRC71通过促进AR进核介导前列腺癌雄激素非依赖性生长的分子机制研究
  • 批准号:
    82373031
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
接触丰富的零部件装配动态力-位图像学习理论及控制方法
  • 批准号:
    52375519
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
兰科吻兰族的系统学研究及其区域丰富度差异成因探讨
  • 批准号:
    32360063
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于NKA/GLT-1通路探讨丰富环境抑制缺血性脑损伤兴奋性毒性的机制研究
  • 批准号:
    82360455
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
丰富环境通过DNA甲基化调控Foxd3/miR-135a-5p通路改善AD小鼠学习记忆的机制研究
  • 批准号:
    82371442
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Enriching Exhibition Stories: Adding Voices to Quire
丰富展览故事:为Quire添加声音
  • 批准号:
    AH/Y006011/1
  • 财政年份:
    2023
  • 资助金额:
    $ 57.09万
  • 项目类别:
    Research Grant
Enriching ECHO Cohorts with High-risk Pregnancies and Children with Disabilities (Enriching ECHO)
丰富高危妊娠和残疾儿童的 ECHO 队列 (Enriching ECHO)
  • 批准号:
    10746674
  • 财政年份:
    2023
  • 资助金额:
    $ 57.09万
  • 项目类别:
Uncovering the Potential of Aural-Centric Pedagogies in Producing a More Enriching Learning Experience within the Teaching of GCSE-Level History in En
发掘以听觉为中心的教学法在 GCSE 水平历史教学中创造更丰富学习体验的潜力
  • 批准号:
    2854498
  • 财政年份:
    2023
  • 资助金额:
    $ 57.09万
  • 项目类别:
    Studentship
Collaborative Research: Elements: Enriching Scholarly Communication with Augmented Reality
合作研究:要素:通过增强现实丰富学术交流
  • 批准号:
    2209625
  • 财政年份:
    2022
  • 资助金额:
    $ 57.09万
  • 项目类别:
    Standard Grant
Beyond parallel corpora: Enriching low-resource machine translation by leveraging language documentation data
超越并行语料库:利用语言文档数据丰富低资源机器翻译
  • 批准号:
    570119-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 57.09万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了