New Approaches for Dynamic Graph Anomaly Detection, Prediction, and Explanation

动态图异常检测、预测和解释的新方法

基本信息

  • 批准号:
    2213658
  • 负责人:
  • 金额:
    $ 27.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Anomaly detection is a machine learning task which has many practical applications such as intrusion detection, fraud detection, medical diagnosis, defect detection during manufacturing process, suspicious behavior detection, etc. Some of these real-world applications exist in a dynamic environment which require real-time detection of anomalies in a data streaming setting. Detecting, explaining and predicting anomalies (e.g., likely outages in a power grid, rapid spread of virus, etc.) are important tasks that affect the life of people and organizational decision making. The main significant impacts of our project to society are: (i) new capabilities to provide accurate early warnings for anomalies and (ii) previously unavailable explanation capability to provide trustworthy warnings of anomaly to decision makers and general public. Early detection and prediction of anomalies allow decision makers and first responders more time to prepare and overcome the anomalies' adverse effects. The success of our project benefits agencies and local governments that require the planning and allocation of resources to handle anomalies in a timely manner. Moreover, well explained anomaly leads to better mitigation solutions and resource allocation by government agencies and also better individual decision by the general public. Towards this end, every stakeholder will benefit from early detection and prediction together with a clearer understanding of the anomaly to develop better responses to the imminent abnormal event. There is growing interest in real-time anomaly detection applications involving interacting entities such as sensor network, social network, computer network, and power grid that can be modeled using evolving graphs. The major research gap in dynamic graph anomaly detection is that there is no existing framework that can handle real-time dynamic graph anomaly detection, prediction, and explanation tasks within a single system. Moreover, there is a lack of theory to justify anomaly detection performance (i.e., false positive rate, delay time) for existing methods. The proposed three-year research aims to: (i) design an effective computational strategy for false positive control and reduction by multi-view martingale decision process for dynamic graph anomaly detection, (ii) design a computational strategy for delay time reduction using real time dynamic graph anomaly prediction, and (iii) explore a new time-dependent anomaly explanation model driven by the multi-view decision process together with anomaly identification in graph. The long-term objective of this project is to design a reliable and effective integrated real-time anomaly detection and explanation framework for a complex system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
异常检测是一项机器学习任务,具有许多实际应用,例如入侵检测、欺诈检测、医疗诊断、制造过程中的缺陷检测、可疑行为检测等。其中一些实际应用存在于动态环境中,需要真实的环境。 - 数据流设置中的异常时间检测。检测、解释和预测异常(例如,电网可能停电、病毒快速传播等)是影响人们生活和组织决策的重要任务。我们的项目对社会的主要重大影响是:(i) 提供准确的异常早期预警的新能力;(ii) 以前无法提供的解释能力,为决策者和公众提供值得信赖的异常警告。早期发现和预测异常可以让决策者和急救人员有更多时间做好准备并克服异常的不利影响。我们项目的成功使需要规划和分配资源以及时处理异常情况的机构和地方政府受益。此外,良好解释的异常现象可以为政府机构提供更好的缓解解决方案和资源分配,并为公众提供更好的个人决策。为此,每个利益相关者都将从早期检测和预测以及对异常的更清晰了解中受益,以便对即将发生的异常事件做出更好的反应。 人们对涉及交互实体(例如传感器网络、社交网络、计算机网络和电网)的实时异常检测应用越来越感兴趣,这些实体可以使用演化图进行建模。动态图异常检测的主要研究差距是没有现有的框架可以在单个系统内处理实时动态图异常检测、预测和解释任务。此外,缺乏理论来证明现有方法的异常检测性能(即误报率、延迟时间)。拟议的三年研究旨在:(i)设计一种有效的计算策略,通过用于动态图异常检测的多视图鞅决策过程来控制和减少误报,(ii)设计一种实时减少延迟时间的计算策略动态图异常预测,以及(iii)探索由多视图决策过程和图中异常识别驱动的新的时间相关异常解释模型。该项目的长期目标是为复杂系统设计一个可靠有效的集成实时异常检测和解释框架。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和能力进行评估,认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shen Shyang Ho其他文献

Shen Shyang Ho的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shen Shyang Ho', 18)}}的其他基金

Collaborative Research: CPS: Medium: RUI: Cooperative AI Inference in Vehicular Edge Networks for Advanced Driver-Assistance Systems
协作研究:CPS:中:RUI:高级驾驶员辅助系统车辆边缘网络中的协作人工智能推理
  • 批准号:
    2128341
  • 财政年份:
    2021
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant
ATD: New Approaches for Analyzing Spatiotemporal Data for Anomalies
ATD:分析时空数据异常的新方法
  • 批准号:
    1830489
  • 财政年份:
    2018
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于软体驱动和传感的消融导管远端新构型动态力精准控制方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于动态共价化学的外泌体唾液酸糖肽富集新介质与方法
  • 批准号:
    22104013
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于整合方法的新冠病毒3’非翻译区的结构与构象动态特性研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目
结构宏观经济模型的估计与评价——基于新后验模拟方法
  • 批准号:
    71473168
  • 批准年份:
    2014
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
机械疲劳损伤的多源激励-光纤光栅分布动态检测的新原理与新方法
  • 批准号:
    51375358
  • 批准年份:
    2013
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

GRC: One Health Approaches to Urbanization, Water, and Food Security
GRC:城市化、水和粮食安全的同一个健康方法
  • 批准号:
    10753642
  • 财政年份:
    2023
  • 资助金额:
    $ 27.3万
  • 项目类别:
Toward a deeper understanding of allostery and allotargeting by computational approaches
通过计算方法更深入地理解变构和异体靶向
  • 批准号:
    10612069
  • 财政年份:
    2021
  • 资助金额:
    $ 27.3万
  • 项目类别:
Theory and Application of Some New Approaches to Electronically Non-Adiabatic Dynamic
电子非绝热动力学一些新方法的理论与应用
  • 批准号:
    1856707
  • 财政年份:
    2019
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant
New Controller Design Approaches for Complex, Nonlinear Dynamic Systems
适用于复杂非线性动态系统的新控制器设计方法
  • 批准号:
    1826086
  • 财政年份:
    2018
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant
The development of the new safety driving support system for senior citizen with mild cognitive impairment using dynamic and static brain imaging and heart rate variability.
利用动态和静态脑成像和心率变异性,为患有轻度认知障碍的老年人开发新型安全驾驶支持系统。
  • 批准号:
    17K09322
  • 财政年份:
    2017
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了