Collaborative Research: AF:Medium: Advancing the Lower Bound Frontier
合作研究:AF:中:推进下界前沿
基本信息
- 批准号:2212135
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The central problem in computational complexity theory is to develop the most efficient algorithms for important computational problems. To prove that an algorithm is the most efficient, the holy grail of complexity theory is to prove unconditional lower bounds, showing that any algorithm, however clever or sophisticated, will inherently require a certain amount of resources (hardware, or runtime) to solve. The goal of this research is to tackle the most basic challenge of proving circuit and runtime lower bounds for explicit problems, as well as similar challenges in proof and communication complexity lower bounds.In more detail, this project is focused on two approaches. The first approach involves exploiting the two-way connection between circuit lower bounds and meta-algorithms, algorithms whose inputs or outputs are circuits or other algorithm descriptions. Important examples of meta-algorithms are: circuit satisfiability, where the input is a circuit and the output is whether it is satisfiable; proof search, where the input is an unsatisfiable formula and the output is a small refutation of it in a proof system; and PAC learning, where the input consists of labelled examples of an unknown target function to be output. Often, paradoxically, efficient algorithms for meta-computational problems such as these lead to improved lower bounds and vice versa. The second approach is known as lifting, whereby lower bounds in a more complex model of computation are reduced to lower bounds in a simpler model. Through lifting and related ideas, circuit complexity has been related to proof complexity and communication complexity, and lower bounds have been improved for all three settings. The team of researchers will investigate a variety of ideas to extend and deepen these approaches to push past the current barriers in lower bounds. The research is also expected to develop improved algorithms for meta-algorithmic problems, which are of central importance for hardware and software verification, algorithmic learning, and a broad range of other applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
计算复杂性理论中的主要问题是为重要的计算问题开发最有效的算法。为了证明算法是最有效的,复杂性理论的圣杯是证明无条件的下限,表明任何算法,无论多么聪明或精致,都会固有地需要一定数量的资源(硬件或运行时)才能解决。这项研究的目的是应对明确问题的证明电路和运行时下限的最基本挑战,以及在证明和沟通复杂性下的类似挑战下降。在更详细的情况下,该项目集中在两种方法上。第一种方法涉及利用电路下限和元偏之间的双向连接,输入或输出的算法是电路或其他算法描述。 元算法的重要示例是:电路满足性,输入是电路,输出是令人满意的;证明搜索,其中输入是一个不满意的公式,而输出是在证明系统中的一小部分反驳;和PAC学习,其中输入由要输出的未知目标函数的标记示例组成。通常,诸如元计算问题的矛盾,有效的算法会导致下限改善,反之亦然。第二种方法称为举重,在更复杂的计算模型中,在更简单的模型中将下限降低为下限。 通过提升和相关的想法,电路复杂性与证明复杂性和沟通复杂性有关,并且在所有三种设置中都改善了下限。研究人员团队将调查各种思想,以扩展和加深这些方法,以将当前的障碍推向下限。 预计这项研究还将开发用于元算象问题的改进算法,这对于硬件和软件验证,算法学习和其他广泛的其他应用程序至关重要。该奖项反映了NSF的法定任务,并通过使用该基金会的知识优点和广泛的影响来评估NSF的法定任务,并被认为是值得的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Russell Impagliazzo其他文献
Russell Impagliazzo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Russell Impagliazzo', 18)}}的其他基金
AF: SMALL: Finding Models of Data and Mathematical Objects
AF:小:寻找数据和数学对象的模型
- 批准号:
1909634 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
AF: Large: Collaborative Research: Exploiting Duality between Meta-Algorithms and Complexity
AF:大:协作研究:利用元算法和复杂性之间的二元性
- 批准号:
1213151 - 财政年份:2012
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CT-ISG: Amplifying both security and reliability
CT-ISG:增强安全性和可靠性
- 批准号:
0716790 - 财政年份:2007
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Duality between Complexity and Algorithms
复杂性和算法之间的二元性
- 批准号:
0515332 - 财政年份:2005
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Quantifying Intractability and the Complexity of Heuristics
量化启发法的难处理性和复杂性
- 批准号:
0098197 - 财政年份:2001
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Empirical Analysis of Search Spaces Using Population-Based Sampling
使用基于群体的采样对搜索空间进行实证分析
- 批准号:
9734880 - 财政年份:1998
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
NSF Young Investigator: Small Depth Boolean Circuits and Complexity - Theoretic Cryptography
NSF 青年研究员:小深度布尔电路和复杂性 - 理论密码学
- 批准号:
9257979 - 财政年份:1992
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
相似国自然基金
AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
- 批准号:82300739
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
剪接因子U2AF1突变在急性髓系白血病原发耐药中的机制研究
- 批准号:82370157
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
间充质干细胞微粒通过U2AF1负调控pDC活化改善系统性红斑狼疮的机制研究
- 批准号:82302029
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
circPOLB-MYC-U2AF2正反馈环路上调FSCN1促进舌鳞状细胞癌进展的作用研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
tsRNA-14765结合U2AF2抑制巨噬细胞自噬调节铁死亡对动脉粥样硬化的影响及机制研究
- 批准号:82270494
- 批准年份:2022
- 资助金额:52.00 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335411 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant