Collaborative Research: CNS Core: Medium: TeTON: A Testbed and a Toolkit for Expediting Investigation of and Accelerating Advancements in All-Optical Neural Networks

合作研究:CNS 核心:媒介:TeTON:加速全光神经网络研究和加速进步的测试平台和工具包

基本信息

  • 批准号:
    2211989
  • 负责人:
  • 金额:
    $ 100万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

In a brain, billions of neurons continuously collect electrical signals from one another and through natural non-linear combination of these signals human beings are able to process information (visual, audio, tactile, etc.), learn how to recognize patterns, and make quick decisions. These interconnected neurons form what is commonly known as a neural network. This project aims to develop an all-optical (artificial) neural network (AONN) testbed and related software toolkit for expediting and accelerating advancements in optical artificial intelligence, including a programmable multi-layer AONN hardware with automatic machine learning capability and an open-source software package for public education. The AONN testbed builds upon free-space Fourier optics and ultra-low light level nonlinear optics, which can efficiently recreate with photons functionalities similar to those that are performed in the human brain. Making use of the electromagnetic wave nature of light the resulting AONN is expected to run much faster and consume significantly less energy when compared to the more conventional software and custom electronic-based artificial neural networks that have been applied to realize artificial intelligence (AI) so far.Discovering how to best and most effectively implement AONN solutions is going to change the way in which AI is achieved. An artificial brain that can think at the speed-of-light can pave the way to the realization of a number of new and currently unthinkable real-time applications, like for example inspecting the quality of a large number of manufactured objects and providing virtually instantaneous feedback to the production plant in the event that swift production adjustments are required. Being able to quickly recognize patterns and their anomalies using AONN will find many other applications in the fields of medicine, education, manufacturing, transportation, agriculture, natural science, etc. The following example may illustrate the potential advantages of implementing and using AONN. Each video frame generated by a camera observing an athlete or a patient going though rehabilitation while performing specific tasks could be individually analyzed by AONN in less than one millisecond. Improper or suboptimal body motions would be readily detected by AONN, hence providing instantaneous feedback to the athlete or patient who in turn could continuously correct their posture to achieve improved outcomes. This project supports career development of the undergraduate and graduate students, who work together on this cross-disciplinary project. Courses and outreach materials are developed at the University of Texas at Dallas (UTD) and the University of Kansas (KU) and shared with the public, with an emphasis on engaging with students from underrepresented communities and contributing to future student diversity in STEM disciplines.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在大脑中,数十亿个神经元不断地相互收集电信号,通过这些信号的自然非线性组合,人类能够处理信息(视觉、音频、触觉等),学习如何识别模式,并做出决策。快速做出决定。这些相互连接的神经元形成了通常所说的神经网络。该项目旨在开发全光(人工)神经网络(AONN)测试台和相关软件工具包,以加快光学人工智能的进步,包括具有自动机器学习功能的可编程多层AONN硬件和开源软件公共教育软件包。 AONN 测试台建立在自由空间傅立叶光学和超低光级非线性光学的基础上,可以有效地利用类似于人脑中执行的光子功能进行重建。与用于实现人工智能 (AI) 的更传统的软件和基于定制电子的人工神经网络相比,利用光的电磁波性质,所产生的 AONN 预计运行速度更快,消耗的能量显着减少,因此探索如何最好、最有效地实施 AONN 解决方案将改变人工智能的实现方式。能够以光速思考的人造大脑可以为实现许多新的、目前无法想象的实时应用铺平道路,例如检查大量制造物体的质量并提供几乎瞬时的信息。如果需要快速调整生产,则向生产工厂反馈。 能够使用 AONN 快速识别模式及其异常,将在医学、教育、制造、交通、农业、自然科学等领域找到许多其他应用。以下示例可以说明实施和使用 AONN 的潜在优势。 AONN 可以在不到一毫秒的时间内对运动员或患者在执行特定任务时进行康复的过程进行单独分析,并由摄像机生成的每个视频帧进行单独分析。 AONN 可以轻松检测到不正确或次优的身体运动,从而向运动员或患者提供即时反馈,而运动员或患者反过来可以不断纠正其姿势以实现改善的结果。 该项目支持本科生和研究生的职业发展,他们在这个跨学科项目上共同努力。课程和外展材料由德克萨斯大学达拉斯分校 (UTD) 和堪萨斯大学 (KU) 开发并与公众共享,重点是与来自代表性不足社区的学生互动,并为未来 STEM 学科的学生多样性做出贡献。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea Fumagalli其他文献

Edge/Cloud Co-operative Autonomous Driving Vehicular (ADV) control technologies
边缘/云协同自动驾驶车辆(ADV)控制技术
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    山中直明;岡本聡;鑓田幸大;村中孝行;Andrea Fumagalli
  • 通讯作者:
    Andrea Fumagalli
DDD: Distributed Dataset DNS
DDD:分布式数据集 DNS
  • DOI:
    10.1007/s10586-021-03515-w
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joseph White;Andrea Fumagalli
  • 通讯作者:
    Andrea Fumagalli
CATO: trans-layer dense wavelength-division multiplexing (DWDM) network optimization. The clustering approach for large network design
CATO:跨层密集波分复用(DWDM)网络优化。
The multi-hop multi-rate wavelength division multiplexing ring
多跳多速率波分复用环
  • DOI:
    10.1109/50.908678
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Isabella Cerutti;Andrea Fumagalli;M. Tacca;A. Lardies;R. Jagannathan
  • 通讯作者:
    R. Jagannathan
Smart and Connected Community Network creates new Autonomous Vehicle Services with Big-data science
智能互联社区网络利用大数据科学创建新的自动驾驶汽车服务
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Naoaki Yamanaka;Satoru Okamoto;Kodai Yarita;Takayuki Muranaka;Andrea Fumagalli
  • 通讯作者:
    Andrea Fumagalli

Andrea Fumagalli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrea Fumagalli', 18)}}的其他基金

Collaborative Research: CNS Core: MEDIUM: RUI: Optics Without Borders
合作研究:CNS 核心:MEDIUM:RUI:光学无国界
  • 批准号:
    1956357
  • 财政年份:
    2020
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
US Ignite: Collaborative Research: Track 1: Industrial Cloud Robotics across Software Defined Networks
US Ignite:协作研究:轨道 1:跨软件定义网络的工业云机器人
  • 批准号:
    1531039
  • 财政年份:
    2015
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
CC*DNI Integration: PROnet: A PRogrammable Optical Network Prototype Serving the Campus
CC*DNI 集成:PROnet:服务于园区的可编程光网络原型
  • 批准号:
    1541461
  • 财政年份:
    2015
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research:Digital SubCarrier Multiplexing (DSCM) Networks: from the Core to the Access
NeTS:媒介:协作研究:数字子载波复用 (DSCM) 网络:从核心到接入
  • 批准号:
    1409849
  • 财政年份:
    2014
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
NeTS: JUNO: Collaborative Research: ACTION: Applications Coordinating with Transport, IP, and Optical Networks
NetS:JUNO:协作研究:ACTION:与传输、IP 和光网络协调的应用
  • 批准号:
    1405405
  • 财政年份:
    2014
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
NeTS: Large: Collaborative Research: HyperFlow - A Hybrid IP/Optical Flow Network Architecture
NeTS:大型:协作研究:HyperFlow - 混合 IP/光流网络架构
  • 批准号:
    1111329
  • 财政年份:
    2011
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
NeTS-NR: Collaborative Research: High-Speed Self-Configuring Networks Based on Cost-Effective Plug-and-Play Optical (PPO) Nodes
NeTS-NR:协作研究:基于经济高效的即插即用光(PPO)节点的高速自配置网络
  • 批准号:
    0435393
  • 财政年份:
    2004
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Differentiated Reliability (DiR) in Multi-layer Optical Networks
多层光网络中的差异化可靠性 (DiR)
  • 批准号:
    0082085
  • 财政年份:
    2001
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant

相似国自然基金

染色质重塑因子CHD3调控中枢神经系统少突胶质细胞发育的机制研究
  • 批准号:
    82301950
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
体细胞突变诱导的壁细胞缺陷在中枢神经系统血管畸形出血中的作用机制及干预研究
  • 批准号:
    82330038
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
IL-17A通过STAT5影响CNS2区域甲基化抑制调节性T细胞功能在银屑病发病中的作用和机制研究
  • 批准号:
    82304006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于人体镜像中枢神经系统和信任度的假肢互适应机制研究
  • 批准号:
    62363006
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
S100A9作为万古霉素儿童中枢神经系统抗感染个体化治疗预测因子的机制研究和量效分析
  • 批准号:
    82304631
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 100万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了