SaTC: CORE: Small: Beat Modern Virtualization Obfuscation at Their Own Game: A Bottom-Up Deobfuscation Approach
SaTC:核心:小型:在自己的游戏中击败现代虚拟化混淆:自下而上的反混淆方法
基本信息
- 批准号:2211905
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Obfuscation technology has been widely adopted by writers of malicious code (malware) to circumvent defense solutions. The goal of obfuscation is to transform malware into an equivalent, but highly complex form that hides the malware's structure and hinders automatic detection solutions and even manual inspection by security analysts. Rapid analysis of obfuscated malware is vital for a swift response to emerging threats, such as ransomware. This research project advances human knowledge on defeating obfuscated malware. The project's novelties are the new knowledge revealed from the state-of-the-art obfuscation, the new techniques designed for extracting the knowledge, and the new deobfuscation methods for understanding such type of stealthy malware. The project's broader significance and importance are new cybersecurity learning experiences for K-12/undergraduate/graduate students, and new technologies for national cybersecurity against a wide range of emerging malware threats, with high potential for transition to practice. The insight of this project is to leverage the virtualization technique itself to beat modern virtualization obfuscators. Two major features play a crucial role in the success of virtualization obfuscation: sophistication (the obfuscated form is very complex and different from the original program) and diversification (multiple obfuscated forms of the same program strikingly vary). These features heavily impede existing deobfuscation techniques that rely on recognizing special virtual machine patterns or treating the whole virtualization as a black box. This project invents and implements a series of novel methods to: (1) comprehensively probe the sophisticated structures inside virtual machines, such as interpretation architecture, virtual instructions, and handler encryption, (2) reveal the core techniques to combine, mutate, and randomize diverse virtual machines, and (3) build a new, interpretable virtual machine specifically for deobfuscation, which can be stitched into a simple, executable program as the deobfuscation result. The new techniques developed from this project effectively free security professionals from the painful, tedious deobfuscation steps incurred in malware analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
恶意代码(恶意软件)的作者广泛采用了混淆技术,以规避国防解决方案。混淆的目的是将恶意软件转变为一种相当但高度复杂的形式,该形式隐藏了恶意软件的结构,并阻碍了安全分析师的自动检测解决方案,甚至可以手动检查。对混淆的恶意软件的快速分析对于快速对新兴威胁(例如勒索软件)的响应至关重要。该研究项目促进了人类关于击败混淆的恶意软件的知识。该项目的新知识是从最新的混淆,旨在提取知识的新技术以及用于理解这种类型的隐身恶意软件的新技术。该项目的重要性和重要性是针对K-12/本科/研究生的新网络安全学习经验,以及针对各种新兴恶意软件威胁的全国网络安全技术的新技术,具有较高的实践潜力。该项目的见解是利用虚拟化技术本身击败现代虚拟化混淆器。两个主要特征在虚拟化混淆的成功中起着至关重要的作用:复杂性(混淆形式非常复杂,与原始程序不同)和多样化(同一程序的多种混淆形式的多种相同形式的变化)。这些功能极大地阻碍了现有的去量化技术,这些技术依赖于识别特殊的虚拟机模式或将整个虚拟化视为黑匣子。 This project invents and implements a series of novel methods to: (1) comprehensively probe the sophisticated structures inside virtual machines, such as interpretation architecture, virtual instructions, and handler encryption, (2) reveal the core techniques to combine, mutate, and randomize diverse virtual machines, and (3) build a new, interpretable virtual machine specifically for deobfuscation, which can be stitched into a simple, executable program as DEOBFUSCATION结果。该项目开发的新技术有效地从恶意软件分析中产生的痛苦,乏味的去滥用步骤中有效地免费。该奖项反映了NSF的法定任务,并认为值得通过基金会的知识分子的智力优点和更广泛的影响来通过评估来提供支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
No Free Lunch: On the Increased Code Reuse Attack Surface of Obfuscated Programs
- DOI:10.1109/dsn58367.2023.00039
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Naiqian Zhang;Daroc Alden;Dongpeng Xu;Shuai Wang;T. Jaeger;Wheeler Ruml
- 通讯作者:Naiqian Zhang;Daroc Alden;Dongpeng Xu;Shuai Wang;T. Jaeger;Wheeler Ruml
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dongpeng Xu其他文献
WIP: Interdisciplinary Teaching via Hands-on Practice in Cybersecurity
WIP:通过网络安全实践进行跨学科教学
- DOI:
10.1109/isec57711.2023.10402266 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Qiaoyan Yu;Dean Sullivan;Diliang Chen;Dongpeng Xu;Karen Jin;Joshua Calzadillas - 通讯作者:
Joshua Calzadillas
Memoized Semantics-Based Binary Diffing with Application to Malware Lineage Inference
基于记忆语义的二进制差异及其在恶意软件谱系推断中的应用
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Jiang Ming;Dongpeng Xu;Dinghao Wu - 通讯作者:
Dinghao Wu
Memory access integrity: detecting fine-grained memory access errors in binary code
内存访问完整性:检测二进制代码中的细粒度内存访问错误
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Wenjie Li;Dongpeng Xu;Wei Wu;Xiaorui Gong;Xiaobo Xiang;Yan Wang;Fangming Gu;Qianxiang Zeng - 通讯作者:
Qianxiang Zeng
Feature-driven Approximate Computing for Wearable Health-Monitoring Systems
可穿戴健康监测系统的特征驱动近似计算
- DOI:
10.1145/3649476.3658719 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
N. Chennagouni;M. Kajol;Diliang Chen;Dongpeng Xu;Qiaoyan Yu - 通讯作者:
Qiaoyan Yu
Model Checking – Case Study of a Temporary Structures Monitoring System
模型检验——临时结构监测系统案例研究
- DOI:
10.1007/978-3-030-41560-0_8 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Dongpeng Xu;Xiao Yuan;Dinghao Wu;C. Anumba - 通讯作者:
C. Anumba
Dongpeng Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dongpeng Xu', 18)}}的其他基金
CRII: SaTC: Simplification of Mixed Boolean-Arithmetic Obfuscated Expression
CRII:SaTC:混合布尔算术混淆表达式的简化
- 批准号:
1948489 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Towards Securing the Hardware and Software for Approximate Computing Systems
SaTC:核心:小型:致力于保护近似计算系统的硬件和软件
- 批准号:
2022279 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
- 批准号:82303969
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
- 批准号:82304474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肾去交感神经术促进下丘脑室旁核小胶质细胞M2型极化减轻心衰损伤的机制研究
- 批准号:82370387
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
- 批准号:32300220
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
- 批准号:82301603
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
- 批准号:
2343387 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
- 批准号:
2341206 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant