Reconfigurable Neuromorphic Computing to enable Energy-Efficient Edge Intelligence
可重构神经形态计算实现节能边缘智能
基本信息
- 批准号:2210804
- 负责人:
- 金额:$ 33.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to develop an energy-efficient and smart extreme edge device by taking inspiration from the human brain. Extreme edge devices can enable a variety of applications. Specifically, the devices can be used for remote tracking of rapid changes in the arctic, autonomous navigation of aerial and ground robots for deep space exploration, and monitoring and securing critical infrastructure. However, the current technology requires remotely sensed data to be processed in the cloud. This framework has several drawbacks, such as the delay between sensing and decision, shorter battery life due to high power consumption, and privacy concerns related to data transfer. The hardware developed as part of this proposal will seek to address the previously noted challenges and will advance the state-of-the-art in extreme edge devices. Specifically, the grant will enable the development of a reconfigurable brain-inspired processor with the capacity to learn based on input data. The hardware developed as part of this proposal will be used to train and motivate the next generation of students in the areas of microelectronics. Further, the hardware developed will use open-source computer aided design tools to enable broader dissemination of the developed technology. The study proposes to develop a reconfigurable mixed-signal neuromorphic hardware for processing data at the extreme edge. This proposal aims to increase the energy efficiency of neuromorphic hardware by employing mixed-signal circuits to model the neurons and synapses. Further, we propose to incorporate programmable mixed-signal circuit topologies and explore techniques to co-optimize the hardware and software models to learn and adapt the network parameters in the presence of mismatch and variations. In addition, the proposal will also explore circuit topologies to perform learning on-chip. Based on these individual elements, the proposal will investigate a system architecture to develop reconfigurable hardware that can compile a spiking neural network with the capability to learn on-chip for performing extreme edge tasks. The extreme edge task we plan to validate the developed hardware is object detection using openly available datasets and a quadcopter with a limited battery capacity to perform object detection. The proposal will address the knowledge gaps in designing a learning algorithm for a mixed-signal spiking neural network with variation and mismatch, circuit topologies and system architecture for performing on-chip learning with limited resources, and advance the state-of-the-art in energy-efficient neuromorphic hardware.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目的是通过从人脑中汲取灵感来开发节能且智能的极端边缘设备。 Extreme Edge设备可以启用各种应用。具体而言,这些设备可用于远程跟踪北极,空中和地面机器人自动导航的快速变化,以进行深空探索,并监视和确保关键基础设施。但是,当前的技术需要在云中处理远程感知的数据。该框架有几个缺点,例如传感和决策之间的延迟,由于高功耗而导致的电池寿命较短以及与数据传输相关的隐私问题。作为本提案的一部分开发的硬件将寻求应对以前著名的挑战,并将推进极端边缘设备中的最新挑战。具体而言,该赠款将使可重新配置的脑启发的处理器能够根据输入数据进行学习。 作为本提案的一部分开发的硬件将用于训练和激励微电子学领域的下一代学生。此外,开发的硬件将使用开源计算机辅助设计工具来更广泛地传播已发达的技术。 该研究建议开发可重新配置的混合信号神经形态硬件,以处理极端的数据。该建议旨在通过使用混合信号电路来建模神经元和突触来提高神经形态硬件的能效。此外,我们建议合并可编程的混合信号电路拓扑并探索技术以优化硬件和软件模型,以在存在不匹配和变化的情况下学习和调整网络参数。此外,该提案还将探索在片上进行学习的电路拓扑。基于这些个别元素,该提案将研究系统体系结构,以开发可重新配置的硬件,该硬件可以编译尖峰神经网络,并具有学习芯片以执行极端边缘任务的能力。我们计划验证开发的硬件的极端边缘任务是使用公开可用的数据集对象检测,并且是电池可执行对象检测能力有限的四轮驱动器。该提案将解决设计学习算法的知识差距,用于具有变化和不匹配,电路拓扑和系统体系结构的混合信号峰值神经网络,以使用有限的资源进行芯片学习,并提高能源效率高的神经形态硬件的最先进。影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sahil Shah其他文献
Neuroprotective genes activated in the liver in response to experimental stroke
肝脏中响应实验性中风而激活的神经保护基因
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Shu Q. Liu;Sahil Shah;Yu H. Wu - 通讯作者:
Yu H. Wu
AML Final Report Sight & Sound
AML 最终报告预览
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Sahil Shah;Aman Bansal - 通讯作者:
Aman Bansal
Improving cold chain technologies through the use of phase change material
通过使用相变材料改进冷链技术
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Matt Conway;Kelly Daniluk;J. Felder;A. Foo;Amina Goheer;Veena S Katikineni;A. Mazzella;Young Jae Park;George L. Peabody;A. Pereira;Divya Raghavachari;Sahil Shah;Ravi Vaswani - 通讯作者:
Ravi Vaswani
Low-Power Mixed-Signal System for Processing Electric Network Frequency in IoT Devices
用于处理物联网设备中的电网频率的低功耗混合信号系统
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Charana S. S. Sonnadara;Mudi Zhang;Min Wu;Sahil Shah - 通讯作者:
Sahil Shah
Design Space Exploration Tool for Mixed-Signal Spiking Neural Network
混合信号尖峰神经网络的设计空间探索工具
- DOI:
10.1109/mwscas57524.2023.10405975 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sayma Nowshin Chowdhury;Sahil Shah - 通讯作者:
Sahil Shah
Sahil Shah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sahil Shah', 18)}}的其他基金
CAREER: Exploring Mixed-Signal Computation for Energy-Efficient and Robust Brain-Machine Interfaces
职业:探索节能且鲁棒的脑机接口的混合信号计算
- 批准号:
2338159 - 财政年份:2024
- 资助金额:
$ 33.62万 - 项目类别:
Continuing Grant
Collaborative Research: CMOS+X: 3D integration of CMOS spiking neurons with AlBN/GaN-based Ferroelectric HEMT towards artificial somatosensory system
合作研究:CMOS X:CMOS 尖峰神经元与 AlBN/GaN 基铁电 HEMT 的 3D 集成,用于人工体感系统
- 批准号:
2324781 - 财政年份:2023
- 资助金额:
$ 33.62万 - 项目类别:
Standard Grant
Travel: NSF-CISE Student Participation Grant for MWSCAS 2023
旅行: MWSCAS 2023 NSF-CISE 学生参与补助金
- 批准号:
2326667 - 财政年份:2023
- 资助金额:
$ 33.62万 - 项目类别:
Standard Grant
相似国自然基金
面向高性能神经形态计算的功能化大豆蛋白基生物忆阻器及其光电神经突触可塑性研究
- 批准号:62371183
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
金属卤化物基柔性全光调控突触晶体管及其神经形态计算应用研究
- 批准号:62304021
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于大规模电解质栅控晶体管阵列的神经形态计算
- 批准号:62374181
- 批准年份:2023
- 资助金额:55.00 万元
- 项目类别:面上项目
面向开放场景类脑具身智能的大规模数字神经形态计算研究
- 批准号:62376185
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
斯格明子的随机动力学及其神经形态计算应用器件基础研究
- 批准号:12304160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Heterogeneous Neuromorphic and Edge Computing Systems for Realtime Machine Learning Technologies
职业:用于实时机器学习技术的异构神经形态和边缘计算系统
- 批准号:
2340249 - 财政年份:2024
- 资助金额:
$ 33.62万 - 项目类别:
Continuing Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
- 批准号:
2401544 - 财政年份:2023
- 资助金额:
$ 33.62万 - 项目类别:
Standard Grant
Integrated Event-Based SoC: Revolutionizing Sensor and AI Processor Performance with Low-Latency, Energy-Efficient Neuromorphic Computing
基于事件的集成 SoC:通过低延迟、节能的神经拟态计算彻底改变传感器和 AI 处理器的性能
- 批准号:
10072308 - 财政年份:2023
- 资助金额:
$ 33.62万 - 项目类别:
Grant for R&D
Large-scale photonic-electronic integration for next generation neuromorphic computing systems
用于下一代神经形态计算系统的大规模光子电子集成
- 批准号:
2889165 - 财政年份:2023
- 资助金额:
$ 33.62万 - 项目类别:
Studentship
CRII: RI: Building A Self-Learning Robot System with Neuromorphic Computing
CRII:RI:构建具有神经形态计算的自学习机器人系统
- 批准号:
2245712 - 财政年份:2023
- 资助金额:
$ 33.62万 - 项目类别:
Standard Grant