Collaborative Research: Semiparametric and Reinforcement Learning for Precision Medicine
协作研究:精准医学的半参数和强化学习
基本信息
- 批准号:2210659
- 负责人:
- 金额:$ 26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Precision medicine seeks to optimize the medical treatments tailored to individual characteristics, including genetic features, demographic information, environmental factors, etc. Individualized treatment rule formalizes the process of decision making that translates the patients’ information into the recommended treatment, and a dynamic treatment regime consists of the sequence of individualized treatment decisions for one or more treatment decision times. Meanwhile, recent developments in medical imaging technologies dramatically affect disease and health studies. Biomedical imaging and imaging-guided interventions are key in the infrastructure for precision medicine. It is of great importance to developing an approach for incorporating imaging data along with other abundant information in precision medicine research. However, the current exploration for these aforementioned abundant features in precision medicine study is far from sufficient. Motivated by this, the project targets to build the statistical analysis framework in precision medicine incorporating abundant features and provide the support of data-driven decision making, which will not enrich statistical methodological studies but provide an integrated early diagnosis tool and an informative tool to guide treatment and lifestyle intervention in health science. In addition, the project will provide training and support for graduate students, as well as instructions in both undergraduate- and graduate-level courses.The PIs will adapt the Q-learning, semiparametric learning, functional data analysis, and reinforcement learning frameworks to precision medicine with abundant features, including medical images, genetic features, demographic information, environmental factors, etc. Focusing on different scenarios, this research program consists of three components: (i) functional individualized treatment regime study incorporating abundant features, along with the development of a novel basis expansion tool to handle the multi-dimensional image feature; (ii) generalized functional individualized treatment regime study incorporating abundant features, which allows the response variable discrete; and (iii) functional Q-learning with abundant features, which extends the methodology to the multi-stage decision setting. The investigators will conduct the theoretical developments, develop efficient algorithms, and implement and apply the tools to real-world data for all these components in this project. From the statistical point of view, the theoretical explorations will yield more insights into semiparametric and reinforcement learning in precision medicine with abundant features. From the computational point of view, efficient and scalable algorithms will be developed and implemented in a form of publicly available software.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
精密医学旨在优化针对个人特征的医疗治疗,包括遗传特征,人口统计信息,环境因素等。个性化治疗规则正式化了将患者的信息转化为建议治疗的决策过程,并且动态治疗方案由一个或更多的治疗治疗决策时间组成一个或更多的治疗决策时间。同时,医学成像技术的最新发展极大地影响了疾病和健康研究。生物医学成像和成像引导的干预措施是精密医学基础设施的关键。在精确医学研究中开发一种将成像数据以及其他丰富信息结合在一起的方法非常重要。但是,当前对这些合理的丰富特征在精密医学研究中的探索还远远不够。在此激励的基础上,该项目的目标是在精确医学中建立统计分析框架,其中包含丰富的特征,并提供了数据驱动的决策制定,这将不会丰富统计方法论研究,而是提供了一种综合的早期诊断工具,并提供了一个信息,以指导治疗和生活方式干预健康科学。 In addition, the project will provide training and support for graduate students, as well as instructions in both undergraduate- and graduate-level courses.The PIs will adapt the Q-learning, semiparametric learning, functional data analysis, and reinforcement learning frameworks to precision medicine with abundant features, including medical images, genetic features, demographic information, environmental factors, etc. Focusing on different scenarios, this research program consists of three components: (i)功能性个性化处理制度研究编码丰富的特征,以及开发新的基础扩展工具来处理多维图像特征; (ii)包含丰富特征的广义功能个性化处理制度研究,允许响应变量离散; (iii)具有丰富特征的功能Q学习,将方法扩展到多阶段决策设置。研究人员将进行理论发展,开发有效的算法,并实施并将工具应用于本项目中所有这些组件的实际数据。从统计的角度来看,理论探索将在具有丰富特征的精确医学中对半参数和强化学习产生更多的见解。从计算的角度来看,将以公开可用软件的形式开发和实施高效且可扩展的算法。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响评估审查标准,认为通过评估被认为是宝贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Kosorok其他文献
Using a Natural Language Processing Toolkit to Classify Patient Charts by Psychiatric Diagnosis
- DOI:
10.1016/j.jaclp.2023.11.251 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:
- 作者:
Alissa Hutto;Tarek Zikry;Terra Rose;Jasmine Staebler;Janet Slay;C Ray Cheever;Michael Kosorok;Rebekah Nash - 通讯作者:
Rebekah Nash
Michael Kosorok的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Kosorok', 18)}}的其他基金
Support Vector Machines for Censored Data
用于审查数据的支持向量机
- 批准号:
1407732 - 财政年份:2014
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Collaborative Research: Novel methods for pharmacogenomic data analysis using gene clusters
合作研究:使用基因簇进行药物基因组数据分析的新方法
- 批准号:
0904184 - 财政年份:2009
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
REU Site-Summer Research Program in Biostatistics
REU 站点-生物统计学夏季研究计划
- 批准号:
0139160 - 财政年份:2002
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
相似国自然基金
基于微效协变量产生外部对照的半参数方法研究
- 批准号:82304253
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
半接双星参数测量和特殊样本识别方法研究
- 批准号:12303106
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
拓扑半金属材料界面的光子自旋霍尔效应的光传输非互易行为与调制机理及其在薄膜光学特性参数表征中的应用方法研究
- 批准号:52375547
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
半参数化多智能体系统在多机械臂协同控制中的应用研究
- 批准号:12361105
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
具有内生变量的半参数删失数据模型估计与应用研究
- 批准号:72203116
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Semiparametric and Reinforcement Learning for Precision Medicine
协作研究:精准医学的半参数和强化学习
- 批准号:
2210658 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: Smoothing Spline Semiparametric Density Models
合作研究:平滑样条半参数密度模型
- 批准号:
1507078 - 财政年份:2015
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: Smoothing Spline Semiparametric Density Models
合作研究:平滑样条半参数密度模型
- 批准号:
1507620 - 财政年份:2015
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: Flexible and Robust Data-driven Inference in Nonparametric and Semiparametric Econometrics
协作研究:非参数和半参数计量经济学中灵活且稳健的数据驱动推理
- 批准号:
1459967 - 财政年份:2015
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: Flexible and Robust Data-driven Inference in Nonparametric and Semiparametric Econometrics
协作研究:非参数和半参数计量经济学中灵活且稳健的数据驱动推理
- 批准号:
1459931 - 财政年份:2015
- 资助金额:
$ 26万 - 项目类别:
Standard Grant