Collaborative Research: Frameworks for Intelligent Adaptive Experimentation: Enhancing and Tailoring Digital Education

合作研究:智能自适应实验框架:增强和定制数字教育

基本信息

  • 批准号:
    2209821
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2027-07-31
  • 项目状态:
    未结题

项目摘要

People are constantly learning – whether formal education of homework problems & videos, or reading websites like Wikipedia. This project develops the Experiments As a Service Infrastructure (EASI), which lowers the barriers to conducting randomized experiments that compare alternative ways of designing digital learning experiences, as well as analyzing the data derived from the systems to rapidly change what future people receive. It does this by bringing together multidisciplinary researchers around the shared problem of testing ideas for improving and personalizing educational resources. The research also advances (1) the science of learning and instruction; (2) methods for analyzing complex educational data, and (3) machine learning algorithms that use data to improve educational experiences. Improving learning and teaching increases people's knowledge and gives them the ability to solve problems they care about, driving their personal and career success and increasing society's human capital.Instructional decisions about digital educational resources impact all students, from practice problems in K12 systems to tutorial webpages in university and community college online courses. The current versions of resources are too infrequently compared against alternative resources, which may provide better learning. With this in mind, the project has the goal of using data to test hypotheses about what is most helpful to students, and then use that data to change the experience for future students. The Experiments-As-a-Service-Infrastructure supports three complementary types of multi-disciplinary, collaborative research. A–Design: the infrastructure helps researchers investigate theories of learning and discover how to improve instruction by designing randomized field experiments on components of real-world digital educational resources. This provides more ecologically valid research on learning and instruction, in subfields of education, psychology, policy and discipline-based education research. B–Analysis: the infrastructure facilitates sophisticated analysis of experiments in the context of large-scale data about student profiles, such as to discover which interventions are effective for different subgroups of students. This can advance the use of innovative data-intensive methods for gaining actionable knowledge in education, learning analytics, educational data mining, and applied statistics. C–Adaptation: the infrastructure enables research into adaptive experimentation by providing a testbed for algorithms that dynamically analyze data from experiments, to enhance learning by presenting future students with whichever version of a resource (condition) is more effective, or to personalize learning by presenting different subgroups of future students with the version of a resource that is most effective for their subgroup. The infrastructure provides a testbed for empirical evaluation of which algorithms enact effective adaptive experimentation in education to inspire the development of new algorithms. Finally, the work aligns many educational communities around the shared problem of enhancing and personalizing education through experimentation and spurs multidisciplinary research by providing extensive support for collaboration and sharing of designs, data, analysis scripts and algorithms while fostering an online community for training and collaborations, to promote high-quality, innovative, impactful experiments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人们一直在学习 - 无论是家庭作业问题和视频的正规教育,还是阅读Wikipedia等网站。该项目将实验作为服务基础架构(EASI)开发,该项目降低了进行随机实验的障碍,以比较设计数字学习经验的替代方式,并分析了从系统中得出的数据来快速改变未来人的收到的东西。它通过将多学科研究人员汇总到测试改进和个性化教育资源的共同问题的共同问题来实现这一目标。该研究还提高了学习和指导的科学; (2)分析复杂教育数据的方法,以及(3)使用数据来改善教育经验的机器学习算法。改善学习和教学可以提高人们的知识,并使他们能够解决他们关心的问题,推动其个人和职业成功并增加社会的人力资本。关于数字教育资源的教学决策影响了所有学生,从K12系统的实践问题到大学和社区大学在线课程的教程网页。当前的资源版本很少与替代资源进行比较,这可能提供更好的学习。考虑到这一点,该项目的目标是使用数据来测试有关最有帮助的学生的假设,然后使用该数据来改变未来学生的体验。实验-As-Service-Infrasture支持三种完整类型的多学科,协作研究。 A – DeSign:基础架构可帮助研究人员通过设计对现实世界数字教育资源组成部分的随机现场实验来研究学习理论,并发现如何改善教学。这为基于教育,心理学,政策和基于学科的教育研究的子领域提供了有关学习和教学的生态有效研究。 B - 分析:基础设施有助于在有关学生概况的大规模数据的背景下进行实验的复杂分析,例如发现哪些干预措施对学生的不同亚组有效。这可以推动使用创新的数据密集型方法来获得教育,学习分析,教育数据挖掘和应用统计的可行知识。 C - 适应:基础架构通过为算法提供测试床的研究,从而可以对自适应实验进行研究,以动态分析实验的数据,从而通过向未来的学生展示资源的哪个版本(条件)来增强学习,或者通过为未来的学生提供最有效的资源的不同子组来个性化的学习,以实现他们的个性化学习。基础架构最终为测试台提供了一个测试床,工作对齐许多教育社区围绕通过实验增强和个性化教育的共同问题,并通过为设计,数据,分析脚本和算法的协作和共享的协作提供广泛的支持,以促进培​​训和协作的培训和协作,以促进高级实验,以促进型号的实验,以促进培​​训,促进型号的实验,以促进培​​训,以促进高级实验。并使用基金会的智力优点和更广泛的影响审查标准通过评估来诚实地获得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Carver其他文献

Longlining haddock with manufactured bait to reduce catch of Atlantic cod in a conservation zone
  • DOI:
    10.1016/j.fishres.2008.08.015
  • 发表时间:
    2008-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michael V. Pol;Steven J. Correia;Robert MacKinnon;Jeffrey Carver
  • 通讯作者:
    Jeffrey Carver

Jeffrey Carver的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Carver', 18)}}的其他基金

Collaborative Research: EAGER: Characterizing Research Software from NSF Awards
协作研究:EAGER:获得 NSF 奖项的研究软件特征
  • 批准号:
    2211277
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CC* Compute: Accelerating Advances in Science and Engineering at The University of Alabama Through HPC Infrastructure
CC* 计算:通过 HPC 基础设施加速阿拉巴马大学科学与工程的进步
  • 批准号:
    2018846
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
A Inquiry-Based Pedagogy and Supporting Tool to Improve Student Learning of Software Testing Concepts
基于探究的教学法和支持工具,以提高学生对软件测试概念的学习
  • 批准号:
    2013296
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Small: INnovative Training Enabled by a Research Software Engineering Community of Trainers (INTERSECT)
协作研究:网络培训:实施:小型:由研究软件工程培训师社区 (INTERSECT) 支持的创新培训
  • 批准号:
    2017259
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SFS@BAMA: Shaping the Next Generation of Cyber Professionals
SFS@BAMA:塑造下一代网络专业人员
  • 批准号:
    1946599
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Travel Grant for the 2018 Empirical Software Engineering International Week
2018 年实证软件工程国际周旅费补助
  • 批准号:
    1834707
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Transforming Computer Science Education Research Through Use of Appropriate Empirical Research Methods: Mentoring and Tutorials
合作研究:通过使用适当的实证研究方法来改变计算机科学教育研究:指导和教程
  • 批准号:
    1525373
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
EAGER: Collaborative Research: Making Software Engineering Work for Computational Science and Engineering: An Integrated Approach
EAGER:协作研究:使软件工程为计算科学与工程服务:一种综合方法
  • 批准号:
    1445344
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Integrating Software Engineering and Human Error Models to Improve Software Quality
集成软件工程和人为错误模型以提高软件质量
  • 批准号:
    1421006
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CI-P: Advanced Systematic Literature Review Infrastructure for Software Engineering
CI-P:软件工程的高级系统文献综述基础设施
  • 批准号:
    1305395
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

多价框架核酸与CRISPR/Cas协作传感平台研究及三阴性乳腺癌术后监测应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多价框架核酸与CRISPR/Cas协作传感平台研究及三阴性乳腺癌术后监测应用
  • 批准号:
    22204104
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于高阶正则化半监督学习的多跟踪器框架模型及融合策略研究
  • 批准号:
    61571362
  • 批准年份:
    2015
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
表示模型框架下高光谱遥感影像分类若干技术研究
  • 批准号:
    61571033
  • 批准年份:
    2015
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
随机几何框架下的多层异构蜂窝网中物理层安全问题研究
  • 批准号:
    61401510
  • 批准年份:
    2014
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411152
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411297
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411298
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347322
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了