Collaborative Research: Frameworks: Building a Collaboration Infrastructure: CyberWater2 -- A Sustainable Data/Model Integration Framework

协作研究:框架:构建协作基础设施:Cyber​​Water2——可持续数据/模型集成框架

基本信息

  • 批准号:
    2209835
  • 负责人:
  • 金额:
    $ 70.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

Natural hazards, such as coastal and inland flooding caused by Hurricanes and severe drought and its associated wildfire, have been occurring with unprecedented frequency, induced by climate changes that encompass hydrological, biological, environmental, atmospheric, ocean, and other geosciences. Such hazards have caused not only profound damages to our environment and required tremendous efforts to recover, but also cost people's lives. To mitigate these potential disasters, it is a critical time to tackle their associated scientific questions both fundamental and large-scale that impact on the health, resilience, and sustainability of the Earth system we live in. The problems are complex and multidisciplinary, and researchers and practitioners from diverse fields must work together to find solutions. By its nature, Earth system models are comprised of component models – from land surface, to rivers, coastal regions, ocean, sea ice, and atmosphere, where each component model is coupled with one another. As science advances, a component model or its subsystems may have to be replaced because of new understanding, or because different perspectives must be explored and tested for the credence of different combinations to find the most credible predictions for different conditions at different locations. Such tasks often require substantial efforts and time and can become a bottleneck. This project is aimed at developing a new open-source cyberinfrastructure framework, Cyberwater2, in which model coupling is shifted from the current "code-coupling" approach to a new "information coupling" approach, and can be configured without writing glue code. This minimizes the need to access and modify each participating model's original code, and removes a major obstacle for large-scale cross-institutional collaborations and scientific investigations across disciplines and geographic boundaries. CyberWater2 is designed for diverse research communities including water, climate, coastal, engineering, and beyond. With our framework, researchers can devote their collaborative energy on problem solving and exploration of new frontiers, while using CyberWater2 to effectively achieve two-way open model couplings across platforms, model parameter calibration, data assimilation, testing/validations/comparisons, etc.The goal of this project is to make it easier to conduct large scale collaboration on complex problems and solve them efficiently, accurately and in-depth by developing a cyberinfrastructure, CyberWatyer2, that (1) significantly eliminates "glue" coding for two-way couplings across heterogeneous computing platforms, disciplines, and organizations; (2) automates complex model calibration and facilitates data assimilation processes applicable to various models; (3) supports task-based and in-situ hybrid workflow for greatly improved efficiency on two-way coupling across heterogeneous platforms; (4) provides a CyberWater2 server and web service framework for users in addition to the standalone systems; (5) enables sustainable data access from diverse sources by automatically adapting data agents to the changes (e.g., API interfaces) made to external data sources by providers; and (6) enables automated resource planning with intelligent site recommendation for High Performance Computing (HPC)/Cloud access on demand to maximize users' benefits.This project is supported by the Office of Advanced Cyberinfrastructure in the Directorate for Computer & Information Science & Engineering and the Division of Earth Sciences in the Directorate of Geosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
飓风和严重干旱及其相关野火引起的沿海和内陆洪水等自然危害一直以空前的频率发生,这是由于气候变化而引起的,从而增强了液压,生物学,环境,环境,大气,海洋和其他地球科学。这种危害不仅对我们的环境造成了深远的损害,而且需要巨大的努力才能恢复,而且损害了人们的生命。减轻这些潜在的灾难,现在是解决他们相关的科学问题的关键时刻,既影响我们所生活的地球系统的健康,韧性和可持续性的基本和大规模的问题。这些问题都是复杂而多学科的,来自潜水员领域的研究人员和从业者必须共同努力寻找解决方案。从本质上讲,地球系统模型由组件模型组成 - 从陆地,到河流,沿海地区,海洋,海冰和大气层,每个组件模型彼此相结合。随着科学的进步,由于新的理解,可能必须替换组件模型或其子系统,或者因为必须探索和测试不同组合信用的不同观点,才能找到不同位置不同条件的最可信的预测。这样的任务通常需要大量的努力和时间,并且可能成为瓶颈。该项目旨在开发一种新的开源网络基础架构框架Cyber​​water2,其中模型耦合从当前的“代码耦合”方法转移到新的“信息耦合”方法,并且可以在不编写胶水代码的情况下配置。这最大程度地减少了访问和修改每个参与模型的原始代码的需求,并消除了跨学科和地理界限的大规模跨机构合作和科学研究的主要障碍。 Cyber​​water2专为潜水员研究社区设计,包括水,气候,沿海,工程等。借助我们的框架,研究人员可以将其协作能量投入到解决问题和探索新边界的同时,同时使用Cyber​​Water2有效地实现跨平台跨平台的双向开放模型耦合,模型参数校准,数据同化,测试/验证/比较等。 Cyber​​inFrastructure,Cyber​​Watyer2,(1)显着消除了在异构计算平台,学科和组织之间为双向耦合编码的“胶水”; (2)自动化复杂的模型校准并促进适用于各种模型的数据同化过程; (3)支持基于任务的基于任务和原位混合工作流程,以在跨异构平台之间进行双向耦合方面提高效率; (4)除独立系统外,还为用户提供了网络Water2服务器和Web服务框架; (5)通过将数据代理自动调整到提供商对外部数据源对外部数据源进行的更改(例如,API接口)的更改来启用潜水源的可持续数据访问; (6)启用自动资源计划,并通过智能网站建议进行高性能计算(HPC)/云访问需求,以最大程度地提高用户的福利。该项目得到了计算机与信息科学与工程局的高级网络基础设施办公室的支持。智力优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yao Liang其他文献

Effect of Al on Microstructure and Properties of Hot-Rolled 2205 Dual Stainless Steel
Al对热轧2205双不锈钢组织和性能的影响
Real-time multi-view vision systems using WSNs
使用 WSN 的实时多视图视觉系统
  • DOI:
    10.1145/1529282.1529765
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Pagano;Francesco Piga;Yao Liang
  • 通讯作者:
    Yao Liang
Selection of chemotherapy for older patients with pancreatic cancer based on geriatric assessment.
根据老年评估选择老年胰腺癌患者的化疗方案。
  • DOI:
    10.1016/j.jgo.2022.09.005
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3
  • 作者:
    O. Maeda;A. Matsuoka;Madoka Yanagawa;Y. Muroyama;Kazuhisa Watanabe;Yao Liang;T. Ishikawa;E. Ohno;H. Kawashima;H. Umegaki;M. Kuzuya;Y. Ando
  • 通讯作者:
    Y. Ando
Wireless line sensor network for distributed visual surveillance
用于分布式视觉监控的无线线路传感器网络
  • DOI:
    10.1145/1641876.1641890
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    20.6
  • 作者:
    M. Chitnis;Yao Liang;J. Zheng;P. Pagano;Giuseppe Lipari
  • 通讯作者:
    Giuseppe Lipari
Utilisation of sodium oleate/alkylamide collectors for the selective separation of fluorite and calcite
  • DOI:
    10.1016/j.molliq.2024.125925
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Wenxia Zhu;Jianhua Kang;Danxian Zhang;Yangge Zhu;Jie Ding;Yao Liang;Haisheng Han;Wei Sun;Zhiyong Gao
  • 通讯作者:
    Zhiyong Gao

Yao Liang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yao Liang', 18)}}的其他基金

Framework: Software: Collaborative Research: CyberWater--An open and sustainable framework for diverse data and model integration with provenance and access to HPC
框架:软件:协作研究:Cyber​​Water——一个开放且可持续的框架,用于将多种数据和模型集成,并提供 HPC 的来源和访问权限
  • 批准号:
    1835817
  • 财政年份:
    2019
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Compressed Network Tomography and Data Collection in Large-Scale Wireless Sensor Networking
NeTS:小型:协作研究:大规模无线传感器网络中的压缩网络断层扫描和数据收集
  • 批准号:
    1320132
  • 财政年份:
    2013
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Standard Grant
Collaborative Research: From Data to Users: A Prototype Open Modeling Framework
协作研究:从数据到用户:原型开放建模框架
  • 批准号:
    1245171
  • 财政年份:
    2012
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Network Inference and Data Collection Based on Compressed Sensing in Large-Scale Wireless Sensor Networking
EAGER:协作研究:大规模无线传感器网络中基于压缩感知的网络推理和数据收集
  • 批准号:
    1252066
  • 财政年份:
    2012
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Standard Grant
NeTS-NOSS: Collaborative Research: Investigating Temporal Correlation for Energy Efficient and Lossless Communication in Wireless Sensor Networks
NetS-NOSS:协作研究:研究无线传感器网络中节能和无损通信的时间相关性
  • 批准号:
    0758372
  • 财政年份:
    2007
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Continuing Grant
NeTS-NOSS: Collaborative Research: Investigating Temporal Correlation for Energy Efficient and Lossless Communication in Wireless Sensor Networks
NetS-NOSS:协作研究:研究无线传感器网络中节能和无损通信的时间相关性
  • 批准号:
    0721853
  • 财政年份:
    2007
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Continuing Grant

相似国自然基金

多价框架核酸与CRISPR/Cas协作传感平台研究及三阴性乳腺癌术后监测应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多价框架核酸与CRISPR/Cas协作传感平台研究及三阴性乳腺癌术后监测应用
  • 批准号:
    22204104
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于高阶正则化半监督学习的多跟踪器框架模型及融合策略研究
  • 批准号:
    61571362
  • 批准年份:
    2015
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
表示模型框架下高光谱遥感影像分类若干技术研究
  • 批准号:
    61571033
  • 批准年份:
    2015
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
随机几何框架下的多层异构蜂窝网中物理层安全问题研究
  • 批准号:
    61401510
  • 批准年份:
    2014
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411152
  • 财政年份:
    2024
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411297
  • 财政年份:
    2024
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411298
  • 财政年份:
    2024
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
  • 批准号:
    2347322
  • 财政年份:
    2024
  • 资助金额:
    $ 70.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了