Elements: Scalable Bayesian Software for Interpreting Astronomical Images
Elements:用于解释天文图像的可扩展贝叶斯软件
基本信息
- 批准号:2209720
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The BLISS (Bayesian Light Source Separator) Project is an interdisciplinary research effort to develop a software tool that allows astronomers to make use of the latest advances in machine learning. By harnessing these advances, astronomers can rapidly analyze vast quantities of complex data to understand the nature of our universe. This project also engages and educates a wider audience through a workshop series that promotes technical proficiency in software development and machine learning.The software tool, developed as part of this project, will allow astronomers to more easily access Bayesian statistical methods to interpret image data from astronomical surveys. Bayesian methods excel at uncertainty quantification and data integration, two capabilities that will be critical in analyzing the deluge of data produced by next-generation astronomical surveys. One major barrier to the more widespread adoption of Bayesian analysis for interpreting astronomical images is computational: Bayesian inference is notoriously computationally demanding. A second major barrier is social: up to now, novel Bayesian methods have been developed in isolation by statisticians and have rarely been integrated into astronomy workflows because it is unclear to practitioners in either discipline how this can be accomplished. The BLISS Project addresses both these computational and community integration challenges. To overcome the computational challenges, BLISS leverages recent advances in Bayesian inference methodology, including the use of deep learning, variational inference, and GPU acceleration. To ensure immediate and sustainable community use, development of the BLISS is guided by needs identified by domain experts, who are themselves prepared to participate in BLISS's development and are enthusiastic about integrating BLISS into their teams' data analysis workflows.This project is supported by the Office of Advanced Cyberinfrastructure in the Directorate for Computer & Information Science & Engineering, the Division of Mathematical Sciences and the Division of Astronomical Sciences in the Directorate for Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Bliss(Bayesian Light Source分离器)项目是一项跨学科研究工作,旨在开发一种软件工具,允许天文学家利用机器学习的最新进展。通过利用这些进步,天文学家可以快速分析大量复杂数据以了解我们宇宙的性质。 该项目还通过研讨会系列来吸引并教育更广泛的受众,该系列促进了软件开发和机器学习方面的技术水平。作为该项目的一部分,该软件工具将使天文学家更容易访问贝叶斯统计方法,从而从天文学调查中解释图像数据。贝叶斯方法在不确定性量化和数据整合方面表现出色,这两个功能对于分析下一代天文调查产生的数据造成的泛滥至关重要。贝叶斯分析用于解释天文图像的贝叶斯分析更广泛地采用的一个主要障碍是计算:贝叶斯推论众所周知,计算要求。第二个主要的障碍是社会:到目前为止,统计学家孤立地开发了新颖的贝叶斯方法,并且很少将其整合到天文学工作流程中,因为在任何一学科中,从业人员尚不清楚如何实现这一目标。 Bliss项目既应对这些计算和社区整合挑战。为了克服计算挑战,幸福感利用了贝叶斯推理方法的最新进展,包括使用深度学习,变分推断和GPU加速。为了确保立即和可持续的社区使用,幸福的发展受到领域专家确定的需求的指导,他们本身准备参加Bliss的发展,并热衷于将Bliss集成到团队的数据分析工作流程中。该项目由高级网络结构办公室提供支持,该项目在高级网络局中,在计算机,信息科学和工程学局中,该部门的数学科学局和分区,该项目是数学上的分区,该项目是数学上的分区。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响标准通过评估来支持的。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Diffusion Models for Probabilistic Deconvolution of Galaxy Images
- DOI:10.48550/arxiv.2307.11122
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Zhiwei Xue;Yuhang Li;Yash J. Patel;J. Regier
- 通讯作者:Zhiwei Xue;Yuhang Li;Yash J. Patel;J. Regier
Scalable Bayesian Inference for Finding Strong Gravitational Lenses
- DOI:
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Yash J. Patel;J. Regier
- 通讯作者:Yash J. Patel;J. Regier
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Regier其他文献
Simulation-Based Inference for Detecting Blending in Spectra
用于检测光谱混合的基于仿真的推理
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Declan McNamara;Jeffrey Regier - 通讯作者:
Jeffrey Regier
Jeffrey Regier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向智能网卡的可扩展FPGA包分类技术研究
- 批准号:62372123
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向高并发软件的可扩展建模与分析技术研究
- 批准号:62302375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于随机化的高效可扩展深度学习算法研究
- 批准号:62376131
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
包含时空维度的可扩展光MIMO解调芯片与均衡器
- 批准号:62335019
- 批准年份:2023
- 资助金额:225.00 万元
- 项目类别:重点项目
基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
- 批准号:62371039
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Rapid, Scalable, and Joint Assessment of Seismic Multi-Hazards and Impacts: From Satellite Images to Causality-Informed Deep Bayesian Networks
地震多重灾害和影响的快速、可扩展和联合评估:从卫星图像到因果关系深度贝叶斯网络
- 批准号:
2242590 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Scalable Bayesian Reinforcement Learning in the Games Industry
游戏行业中的可扩展贝叶斯强化学习
- 批准号:
2890029 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Studentship
Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
- 批准号:
2311354 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Scalable Bayesian Methods for Sampling From Complex Probability Distributions
用于从复杂概率分布中采样的可扩展贝叶斯方法
- 批准号:
566614-2021 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
DMS/NIGMS 2: Scalable Bayesian Inference with Applications to Phylogenetics
DMS/NIGMS 2:可扩展贝叶斯推理及其在系统发育学中的应用
- 批准号:
2153704 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant