Collaborative Research: EAGER: Generation of High Resolution Surface Melting Maps over Antarctica Using Regional Climate Models, Remote Sensing and Machine Learning
合作研究:EAGER:利用区域气候模型、遥感和机器学习生成南极洲高分辨率表面融化地图
基本信息
- 批准号:2136940
- 负责人:
- 金额:$ 8.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Climate change is promoting increased melting in Greenland and Antarctica, contributing to the global sea level rise. Understanding what drives the increase and the amount of meltwater from the ice sheets is paramount to improve our skills to project future sea level rise and associated consequences. Melting in Antarctica mostly occurs along ice shelves (tongues of ice floating in the water). They do not contribute directly to sea level when they melt but their disappearance allows the glaciers at the top to flow faster towards the ocean, increasing the contribution of Antarctica to sea level rise. Satellite data can only offer a partial view of what is happening, either because of limited coverage or because of the presence of clouds, which often obstruct the view in this part of the world. Models, on the other hand, can provide estimates but the spatial detail they can provide is still limited by many factors. This project will use artificial intelligence to overcome these problems and to merge satellite data and model outputs to generate daily maps of surface melting with unprecedented detail. These techniques are similar to those used in cell phones to sharpen images or to create landscapes that look “real” but are only existing in the “computer world,” but they have never been applied to melting in Antarctica for improving estimates of sea level rise. Meltwater in Antarctica has been shown to impact ice shelf stability through the fracturing and flexural processes. Image scarcity has often forced the community to use general climate and regional climate models to explore hydrological features. Notwithstanding models having been considerably refined over the past years, they still require improvements in capturing the processes driving the energy balance and, most importantly, the feedback among the drivers and the energy balance terms that drive the hydrological processes. Moreover, spatial resolution is still too coarse to properly capture hydrological processes, especially over ice shelves. Machine learning (ML) tools can help in this regard, especially when it is computationally infeasible to run physics-based models at desired resolutions in space and time, like in the case of ice shelf surface hydrology. This project will train Generative Adversarial Networks (GANs) with the outputs of a regional climate model and remote sensing data to generate unprecedented, high-resolution (100 m) maps of surface melting. Beside improving the spatial resolution, and hence providing a long-needed and crucial dataset to the polar community, the tool here proposed will be able to provide satellite-like maps on a daily basis, hence addressing also those issues related to the lack of spatial coverage.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金根据《2021 年美国救援计划法案》(公法 117-2)提供。气候变化正在促进格陵兰岛和南极洲的融化加剧,从而有助于了解全球海平面上升的推动因素和原因。冰原的融水量对于提高我们预测未来海平面上升和相关后果的能力至关重要。南极洲的融化主要发生在冰架上(漂浮在水中的冰舌)。当它们融化时,不会直接影响海平面,但它们的消失使顶部的冰川更快地流向海洋,增加了南极洲对海平面上升的贡献,卫星数据只能提供正在发生的事情的部分视图。另一方面,由于覆盖范围有限或云的存在,模型可以提供估计,但它们可以提供的空间细节仍然受到许多因素的限制。利用人工智能来克服这些问题这些技术类似于手机中用于锐化图像或创建看起来“真实”但只存在于“计算机世界”的景观的技术。 ”,但它们从未被应用于南极洲的融化,以改善对海平面上升的估计。事实证明,南极洲的融水会通过破裂和弯曲过程影响冰架的稳定性,因此图像稀缺常常迫使人们使用一般气候。和区域气候模型来探索水文特征,尽管模型在过去几年中已经相当完善,但它们仍然需要捕获驱动能量平衡的过程,最重要的是,驱动因素之间的反馈和驱动能量平衡的改进项。此外,空间分辨率仍然太粗糙,无法正确捕获水文过程,尤其是在冰架上,机器学习(ML)工具可以在这方面提供帮助,特别是当在计算上无法以所需分辨率运行基于物理的模型时。空间和时间,就像这个例子一样该项目将利用区域气候模型和遥感数据的输出来训练生成对抗网络(GAN),以生成前所未有的高分辨率(100 m)表面融化地图。因此,为极地社区提供长期需要的重要数据集,此处提出的工具将能够每天提供类似卫星的地图,从而解决与缺乏空间覆盖相关的问题。该奖项反映了 NSF 的法定的使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dava Newman其他文献
Spectral PINNs: Fast Uncertainty Propagation with Physics-Informed Neural Networks
谱 PINN:利用物理信息神经网络实现快速不确定性传播
- DOI:
10.1016/j.jcp.2021.110134 - 发表时间:
2024-09-13 - 期刊:
- 影响因子:0
- 作者:
Björn Lütjens;Catherine H. Crawford;M. Veillette;Dava Newman - 通讯作者:
Dava Newman
PCE-PINNs: Physics-Informed Neural Networks for Uncertainty Propagation in Ocean Modeling
PCE-PINN:用于海洋建模中不确定性传播的物理信息神经网络
- DOI:
10.48550/arxiv.2211.09419 - 发表时间:
2021-05-05 - 期刊:
- 影响因子:0
- 作者:
Björn Lütjens;Catherine H. Crawford;M. Veillette;Dava Newman - 通讯作者:
Dava Newman
When happy accidents spark creativity: Bringing collaborative speculation to life with generative AI
当快乐的意外激发创造力:通过生成人工智能将协作推测变为现实
- DOI:
10.48550/arxiv.2206.00533 - 发表时间:
2022-06-01 - 期刊:
- 影响因子:0
- 作者:
Ziv Epstein;Hope Schroeder;Dava Newman - 通讯作者:
Dava Newman
ForestBench: Equitable Benchmarks for Monitoring, Reporting, and Verification of Nature-Based Solutions with Machine Learning
ForestBench:利用机器学习监测、报告和验证基于自然的解决方案的公平基准
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Lucas Czech;Björn Lütjens;Dava Newman;David Dao - 通讯作者:
David Dao
WiSoSuper: Benchmarking Super-Resolution Methods on Wind and Solar Data
WiSoSuper:风能和太阳能数据超分辨率方法的基准测试
- DOI:
- 发表时间:
2021-09-17 - 期刊:
- 影响因子:0
- 作者:
Rupa Kurinchi;Björn Lütjens;Ritwik Gupta;Lucien Werner;Dava Newman - 通讯作者:
Dava Newman
Dava Newman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
- 批准号:82301258
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
- 批准号:82373325
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
- 批准号:82301216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
- 批准号:82301257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
- 批准号:52371115
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 8.2万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 8.2万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 8.2万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 8.2万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 8.2万 - 项目类别:
Standard Grant