Attosecond Resolved Photoionization Studies of Atomic and Molecular Dynamics

原子和分子动力学的阿秒分辨光电离研究

基本信息

项目摘要

In this project, physicists will attempt to measure what happens in an atom or molecule after a tightly bound electron is removed by a pulse of x-ray light, leaving the atom or molecule in an excited state which eventually decays to a lower energy configuration. The work will focus on a specific mode of decay (Auger decay) in which the excited atom or molecule ejects another (loosely bound) electron to carry away the excess energy. Here the Auger decay is expected to take around 100 attoseconds (0.0000000000000001 seconds). After Auger decay, a molecule will likely break up into pieces, leaving only its constituent atoms. The experimenters will try to measure this Auger decay time and correlate it with the type of fragments that are released, along with other measured quantities. This study will help illuminate our understanding of the quantum mechanical processes that play out during molecular breakup, and in particular our fundamental understanding of the Auger decay process. Additionally, it is expected that this will serve as the basis for at least one Ph.D. student’s dissertation, several undergraduate students' senior theses, and the employment and training of a postdoctoral fellow. This proposed experiment will attempt to measure the time-resolved dynamics of Auger decay in xenon, methyl iodide (CH3I), and expand our preliminary studies of dichloroethylene (C2H2Cl2). This experiment will employ the well-established COLd Target Recoil Ion Momentum Spectroscopy (COLTRIMS) technique to simultaneously determine the gas-phase molecular frame (i.e. molecular orientation in the laboratory frame), and the Auger decay time. Access to the timing information is achieved through the measurement of the electron momentum and knowledge of the time-dependent nature of the electric field. In this experiment the time-dependent electric field is supplied by the atomic or molecular system via the Auger decay. This experiment will expand our understanding of the dynamics involved in atomic and molecular systems following the ultrafast Auger decay. In the case of molecular systems, the experimenters will attempt to determine the correlation between the Auger decay timing and the Molecular Frame Angular Distribution (MFPAD). The MFPAD is highly sensitive to the molecular potential and at least in principle could be used to glean information about the molecular potential (i.e. the configuration of the molecule’s constituent atoms in space at the “moment” the photoelectron is ejected).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个项目中,物理学家将尝试测量在X射线光的脉冲紧密结合的电子后,将原子或分子中发生的事情测量,使原子或分子处于令人兴奋的状态,有时会衰减到较低的能量构型。这项工作将集中在特定的衰减模式(螺旋蛋白衰减)上,其中激发原子或分子弹出另一个(松散结合)的电子以携带多余的能量。在这里,预计螺旋螺旋腐烂将花费大约100秒(0.0000000000000001秒)。 螺旋螺旋腐烂后,分子可能会分解成碎片,仅留下其成分原子。实验者将尝试测量此螺旋螺旋的衰减时间,并将其与释放的片段类型以及其他测量量相关联。这项研究将有助于阐明我们对分子破裂过程中量子机械过程的理解,尤其是我们对螺旋螺旋衰减过程的基本理解。此外,预计这将是至少一位博士学位的基础。学生的论文,几位本科生的高级论文以及博士后研究员的就业和培训。该提出的实验将尝试测量Xenon,碘化甲基甲基(CH3I)的螺旋衰减的时间分辨动力学,并扩展我们对二氯乙烯(C2H2CL2)的初步研究。该实验将采用公认的冷靶后坐力离子动量光谱(Coltrims)技术,以同时确定气相分子框架(即实验室框架中的分子取向)和螺旋螺旋蛋白的衰减时间。通过测量电子动量和对电场时间相关性的知识,可以实现对时间信息的访问。在本实验中,原子或分子系统通过螺旋螺旋腐烂提供了时间依赖的电场。该实验将扩展我们对超快螺旋螺旋衰减后原子和分子系统涉及的动态的理解。在分子系统的情况下,实验者将尝试确定螺旋螺旋衰减时机与分子框架角分布(MFPAD)之间的相关性。 MFPAD对分子电位高度敏感,至少在原则上可以用来收集有关分子潜力的信息(即,在“时刻”中,分子在太空中的构成原子的构型被驱逐出来。这是NSF的法定任务,并通过评估范围来表现出良好的支持者的范围。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据

数据更新时间:2024-06-01

Joshua Williams其他文献

A Comparison of Secondary Principals' Use of Data Systems to Increase Student Achievement in Mathematics as Measured by Standardized Assessments.
通过标准化评估衡量中学校长使用数据系统提高学生数学成绩的比较。
  • DOI:
  • 发表时间:
    2011
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joshua Williams
    Joshua Williams
  • 通讯作者:
    Joshua Williams
    Joshua Williams
Don't Show A Hyena How Well You Can Bite: Performance, Race and the Animal Subaltern in Eastern Africa
不要向鬣狗展示你的咬合能力:东非的表演、种族和动物底层
  • DOI:
  • 发表时间:
    2017
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joshua Williams
    Joshua Williams
  • 通讯作者:
    Joshua Williams
    Joshua Williams
Input Biometric System Design for Handheld Devices
手持设备的输入生物识别系统设计
  • DOI:
  • 发表时间:
    2014
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Naif Alotaibi;Emmanuel Pascal Bruno;Michael J. Coakley;Alexander Gazarov;Vinnie Monaco;Stephen Winard;Filip Witkowski;Alecia Copeland;Peter Nebauer;Christopher Keene;Joshua Williams
    Naif Alotaibi;Emmanuel Pascal Bruno;Michael J. Coakley;Alexander Gazarov;Vinnie Monaco;Stephen Winard;Filip Witkowski;Alecia Copeland;Peter Nebauer;Christopher Keene;Joshua Williams
  • 通讯作者:
    Joshua Williams
    Joshua Williams
FINGERSPELLING AND PRINT PROCESSING SIMILARITIES IN DEAF AND HEARING READERS
聋哑人和听力正常读者的指纹拼写和打印处理相似性
  • DOI:
  • 发表时间:
    2015
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joshua Williams
    Joshua Williams
  • 通讯作者:
    Joshua Williams
    Joshua Williams
Geologic overview of the Mars Science Laboratory rover mission at the Kimberley, Gale crater, Mars
火星科学实验室火星车任务在火星金伯利盖尔陨石坑的地质概述
  • DOI:
    10.1002/2016je005200
    10.1002/2016je005200
  • 发表时间:
    2017
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Rice;Sanjeev Gupta;A. Treiman;K. Stack;F. Calef;L. Edgar;J. Grotzinger;N. Lanza;L. Le Deit;J. Lasue;K. Siebach;A. Vasavada;R. Wiens;Joshua Williams
    M. Rice;Sanjeev Gupta;A. Treiman;K. Stack;F. Calef;L. Edgar;J. Grotzinger;N. Lanza;L. Le Deit;J. Lasue;K. Siebach;A. Vasavada;R. Wiens;Joshua Williams
  • 通讯作者:
    Joshua Williams
    Joshua Williams
共 19 条
  • 1
  • 2
  • 3
  • 4
前往

Joshua Williams的其他基金

Electron Correlation Dynamics in State-Selected Triatomic Molecules Following Double Photoionization
双光电离后状态选择三原子分子的电子相关动力学
  • 批准号:
    1807017
    1807017
  • 财政年份:
    2018
  • 资助金额:
    $ 51.63万
    $ 51.63万
  • 项目类别:
    Continuing Grant
    Continuing Grant
NSF East Asia and Pacific Summer Institute for FY 2012 in Korea
NSF 东亚及太平洋地区 2012 财年韩国暑期学院
  • 批准号:
    1209079
    1209079
  • 财政年份:
    2012
  • 资助金额:
    $ 51.63万
    $ 51.63万
  • 项目类别:
    Fellowship Award
    Fellowship Award

相似国自然基金

从定性到定量:基于自然解决方案的长江口湿地后生态工程评价
  • 批准号:
    32371621
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
出口转型视角下中国石墨产业全球价值链“低端锁定”破解策略研究
  • 批准号:
    42301342
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
计算机辅助的协作问题解决中情感-社交-认知建模分析与引导促进
  • 批准号:
    62377027
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于超声单模态影像融合实时规划技术实现肝脏肿瘤热消融最优穿刺路径解决方案
  • 批准号:
    82371986
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
身份冲突对消费者决策和行为的影响及机制研究
  • 批准号:
    72302054
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A simple instrument for in-situ, time-resolved speciated measurement of the 16-EPA priority Polycyclic Aromatic Hydrocarbons.
一种简单的仪器,用于对 16-EPA 优先多环芳烃进行原位时间分辨形态测量。
  • 批准号:
    10010866
    10010866
  • 财政年份:
    2020
  • 资助金额:
    $ 51.63万
    $ 51.63万
  • 项目类别:
Studies of intramolecular and photoionization dynamics through the technique of time-resolved photoelectron imaging
通过时间分辨光电子成像技术研究分子内和光电离动力学
  • 批准号:
    2115965
    2115965
  • 财政年份:
    2018
  • 资助金额:
    $ 51.63万
    $ 51.63万
  • 项目类别:
    Studentship
    Studentship
Intersystem Crossing Dynamics in Thio-Substituted Pyrimidine Nucleobases Studied by Time-resolved Photoionization Techniques
通过时间分辨光电离技术研究硫取代嘧啶核碱基的系统间交叉动力学
  • 批准号:
    1800050
    1800050
  • 财政年份:
    2018
  • 资助金额:
    $ 51.63万
    $ 51.63万
  • 项目类别:
    Standard Grant
    Standard Grant
Development of a Spatially Resolved Photoionization Microscope for Chemically Selective Mesoscale Spectroscopy in Organic Photovoltaic Cells
开发用于有机光伏电池化学选择性介观光谱的空间分辨光电离显微镜
  • 批准号:
    0618477
    0618477
  • 财政年份:
    2006
  • 资助金额:
    $ 51.63万
    $ 51.63万
  • 项目类别:
    Continuing Grant
    Continuing Grant
Time-resolved photoionization of cluster beams at the XUV free-electron laser FERMI
XUV 自由电子激光器 FERMI 上簇束的时间分辨光电离
  • 批准号:
    267447508
    267447508
  • 财政年份:
  • 资助金额:
    $ 51.63万
    $ 51.63万
  • 项目类别:
    Research Grants
    Research Grants